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Abstract

A measurement tool of lens distortion correction precision is in-
troduced in this chapter. Lens distortion is a non-linear deformation
which deviates a pinhole camera from central projection. The aligne-
ment is the only property preserved in the central projection. So it is
reasonable to measure the straightness of the projection of 3D straight
lines to evaluate the lens distortion correction precision. To have a
precise evaluation in practice, we need some very straight strings of
good quality. It is relatively easy to ensure the straightness by tightly
strecthing the strings and twisting them on a frame, while it is more
delicate to choose an appropriate type of string. We tried four types
of strings and found that the opaque fishing string is the best choice
for our purpose. An evaluation pattern made up of several parallel
tightly stretched opaque fishing strings, called “calibration harp” is
thus built. The Devernay sub-pixel precision edge detector is used to
extract the edge points in image, which are then associated to the line
segments detected by LSD (Line Segment Detector). Finally, the dis-
tortion is evaluated as the root-mean-square (RMS) distance from the
edge points belonging to a same line segment to their corresponding
linear regression line.

1 Introduction

For precise 3D stereo applications, lens distortion correction is a cru-
cial step. Once the camera is calibrated, it is relatively easy to use
the techniques like triangulation to reconstruct the 3D scene. But if
an imprecise distortion model is used to correct the images, the resid-
ual distortion will be directly back-projected to the reconstructed 3D
scene and make the scene distorted. This can be very harmful in the
applications like remote sensing of early warning of geology disasters
or topographic maps making from stereographic pairs of aerial pho-
tographs. Surprisingly, in despite of its importance, the precision of
distortion correction is not explicitly verified before.

In the literature, three kinds of distortion correction methods co-
exist by minimizing different error:

• classic pattern-based methods, by minimizing the re-projection
error;
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• plumb-line methods, by minimizing the straightness error of cor-
rected lines;

• enlarged epipolar methods, by minimizing the algebraic error in
the estimate of enlarged fundamental matrix.

Traditionally, in classic pattern-based methods, the lens distortion
is estimated together with the camera internal and external parameters
[25, 30, 33, 19, 31]. So we call these methods global camera calibration
methods. These methods usually are not blind and need a known
planar or non-planar pattern which contains simple geometric shapes.
The corners or the centroid of these shapes are used as accurate control
points. The global process finds the camera parameters minimizing
the distance between the observed position of these points in the real
image, and their position in the image simulated by retro-projection
of the pattern model using the camera model. This is a non-linear
problem with many parameters. So the result will be precise only if
the model parameters capture the correct physical camera properties
of cameras, and if the minimization algorithm finds a global minimum.

The second method is called “plumb-line” methods, which rectify
the distorted lines in images which are the projection of 3D straight
lines. The first paper about “plumb-line” method is written by Brown
in 1971 [6]. The similar idea has been used by integrating differet
distortion models, like radial model [3, 23, 29], FOV (Field Of View)
model [13] or rational function model [9]. The error to be minimized
is the straightness error of corrected lines.

Recently more attention has been paid to estimate the distortion
without specific patterns. The distortion is estimated from the corre-
spondences between two or several images without knowing any cam-
era information. The main tool used here is enlarged epipolar con-
straints, which incorporate lens distortion into the epipolar geometry.
Some iterative [26, 32] or non-iterative method, for example, quadratic-
eigenvalue problem (QEP) in [4, 14], lifting method in [5], companion
matrix method in [20], radial trifocal tensor in [28], quadrifocal tensor
in [27], ratio function model in [10], Gröbner basis [18, 22, 7, 17, 16],
are used to estimate the distortion and correct it. These methods
minimize the algebraic error in the estimate of enlarged fundamental
matrix.

Differet types of error mean that there is no common evaluation
for the correction precision of different methods. That is why we want
to propose an absolute measurement. The proposed evaluation is very
simple and evident, which is based on the theorem in section 2. In
section 3, we discuss how to build a pattern called “calibration harp”
for precision verification. Section 4 shows in practice how to use the
photos of the calibration harp to compute the correction precision.

2 From straight lines to straight lines

In this section, we want to present and prove the theorem on which
the evaluation tool is based. It is know to all that the alignement is
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the only property preserved in the central projection. And it can be
presented in a more formal way by the following theorem:

Theorem 1 A camera follows the pinhole model if and only if the
projection of every straight line in space onto the camera is a line.

The aim of distortion correction is exactly to bring a real camera
back to a pinhole camera. Since the above theorem presents a sufficient
and necessary condition, it is enough to rectify the distorted lines in
the image to obtain a pinhole camera. So compared to other methods,
plumb-line methods seem to minimize the correct error. But in the
literature of plumb-line methods, there is no details about experiment
setups, including the type of lines, the photographe condition, the
line/edge detection, etc. Since all of these are important to devise a
precise evaluation tool, we will present them in the following sections.

Even though the above theorem has been widely cited in computer
vision papers [6, 3, 23, 29, 13], there is no proof for it in the literature.
Due to this reason, we want to prove it. lack of proof. Insert later.

3 Build the pattern of verification: a cali-
bration harp

According to the above theorem, it is necessary to find some absolutely
straight lines in the scene. But in the natural scene, it is usually
difficult to find the absolutely straight lines. The only thing we have
in mind is the cables on the cable-stayed bridge, which support the
weight of the bridge, thus are stretched very tightly. Nonetheless, it
is still more convenient if we have our own pattern containing very
straight lines. In practice, it is relatively easy to build this kind of
pattern. We first found a solid frame, like a wood frame in Fig. 2.
Then we screwed some screws on two sides of the wood frame. Finally
we stretched the strings very tightly and fixed them with the aid of the
screws to ensure the straightness of the strings. This pattern looks like
the musical instrument harp, where comes from the name “calibration
harp”. The quality of strings in fact plays also an important role in
building a good calibration harp. Four different strings were tried: the
sewing string, the tennis racket string, the transparent fishing string
and the opaque fishing string. The sewing strings are not very smooth
and their thickness oscillates in a braid pattern along the strings, due to
their twisted structure (see Fig. 1a). Among the four types of strings,
the tennis racket string (Fig. 1b), the transparent fishing string and the
opaque fishing string (Fig. 1c) are apparently more smooth than the
sewing string and have a more uniform thickness. But, as we shall see,
tennis racket strings are rigid and would require an extreme tension
to become straight. The fishing strings are both smooth and flexible,
thus can be easily stretched very straight on the wood framework (see
Fig. 2). But the transparent fishing string is like a lens which can
introduces complicated optic phenomenons. So finally we think that
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the opaque fishing string is the best choice to build the calibration
harp.

(a) The sewing line

(b) The tennis racket line

(c) The opaque fishing line

Figure 1: The quality of lines. (a) sewing line. (b) tennis racket
line. (c) opaque fishing line.

To ensure the extraction precision of the edge points from the string
images, an uniform background with contrast to the string color must
be preferred. The first idea was to use an uniform wall as background.
However, the projected shadows of the strings on the wall are a nui-
sance which can cause an edge detector failure (see Fig. 2a and 2c).
The uniform wall should therefore be far away from the harp, which is
not easy to realize. Next to a uniform wall, the sky is the only distant
and uniform background that comes into mind. Yet, in the experi-
ments, we found that it was difficult to take photos of the harp against
the sky. When the angle of view of the camera is large, it is difficult
to photograph only the sky and to avoid the interference of buildings,
trees, etc. in the photos. In addition, even if at first sight the sky
looks uniform, it turns out to be often inhomogeneous (see Fig. 3a).
The final solution was to fix a translucent paper on the back of the
harp and to use back lighting (see Fig. 2b and 2d for the harp with
the translucent paper). This setup allows us to take photos anywhere,
provided the back of the harp is sufficiently lit.

Remark that the above theorem only concerns about the geometric
aspect by assuming that there is no optic effect, like blur, aliasing,
vignetting, etc. But in reality, the photos are always disturbed more
or less by the optic effect. To lessen the optic aberration as much as
possible, the photo must be taken under a controlled condition. In our
experiment setups, a Canon EOS 30D reflex camera was installed on
a tripod with 10 seconds timer to avoid hand shakes and motion blur.
The camera can be rotated on the tripod to take photos of different
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(a) The harp with an uni-
form opaque object as back-
ground

(b) The harp with a
translucent paper as
background

(c) A close-up of the harp
with an uniform opaque ob-
ject as background

(d) A close-up of the harp
with a translucent paper as
background

Figure 2: The harp with an opaque object or a translucent paper
as background. (a) The harp with an uniform opaque object as
background (see a close-up in (c)). (b) The harp with a translu-
cent paper as background (see a close-up in (d)). The shadow
can be seen in (a) and (c), while there is no shadow in (b) or (d).
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orientations, by keeping the the camera parallel and the same distance
to the harp. Compared to the photos of sewing strings taken by hand
against the sky (Fig. 3a), the photos of opaque fishing strings with a
translucent paper (Fig. 3b) have a more uniform background. In ad-
dition, the images taken by hand (Fig. 3a) suffer from inhomogeneous
blur or variation of strings thickness caused by the inconstant distance
from camera to the harp or the hand motion, while the images taken
by tripod (Fig. 3b) have better quality.

(a) The photo of the harp is
taken by hand against the
sky

(b) The photo of the harp is
taken against a translucent
paper by a tripod

Figure 3: The quality of photos depends on the harp, its back-
ground and also the stability of camera for taking photos.

4 Line segment detection and edge points
extraction

In this section, we show how to evaluate the correction precision in
practice. Assume the distortion in the photos of calibration harp is es-
timated and corrected by a certain distortion correction method. Ac-
cording to the above theorem, whether a camera is a pinhole camera or
not can be evaluated by judging whether the corrected lines are straight
or not. The straightness of a line is defined as the root-mean-square
(RMS) distance from the edge points to their corresponding linear re-
gression line. To compute the RMS distance, we need to extract the
edge points of the corrected lines from the images in sub-pixel precision.
Briefly, the lines are first detected by the LSD algorithm which groups
the pixels having coherent gradient direction into line support regions
[24]. In each validated line support region, Devernay’s algorithm [12]
is used to extract the edge points at sub-pixel precision. Finally, a 1D
Gaussian convolution followed by a sub-sampling is performed on the
extracted edge points to reduce the detection and aliasing noise left by
this detection.
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4.1 Line detection

LSD is a linear-time line segment detector that gives accurate results,
controls its own false detection rate, and requires no parameter tuning
[24]. The algorithm starts by computing the gradient direction at each
pixel to produce a level-line field, i.e., a unit vector field such that
all vectors are tangent to the level line going through their base point.
Then, this field is segmented into connected regions of pixels that share
the same level-line angle up to a certain tolerance (see Fig. 4). These
connected regions are called line support regions. Each line support
region (a set of pixels) is a candidate for a line segment, which is
then validated by a contrario approach and the Helmholtz principle
proposed in [1, 2]. More detail will be added by Rafael.

Figure 4: LSD algorithm.

4.2 Devernay’s detector

The LSD algorithm gives a validated line support region associated to
a line segment, which groups a set of pixels sharing the same gradient
orientation up to some toleration. Devernay’s detector [12] is then used
to extract the edge points of the line segments with sub-pixel precision
in each validated line support region. On good quality images (SNR
larger than 100), Devernay’s detector can attain a precision of about
0.05 pixels. The implementation of Devernay’s detector is very sim-
ple since it is derived from the well-known Non-Maxima Suppression
method [8, 11]. It can be recapitulated in the following steps.

1. Let a point (x, y), where x and y are integers and I(x, y) the
intensity of pixel (x, y).

2. Calculate the gradient of image intensity and its magnitude in
(x, y).

3. Estimate the magnitude of the gradient along the direction of the
gradient in some neighborhood around (x, y).

4. If (x, y) is not a local maximum of the magnitude of the gradient
along the direction of the gradient then it is not an edge point.
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5. If (x, y) is a local maximum then estimate the position of the
edge point in the direction of the gradient as the maximum of an
interpolation on the values of the gradient norm at (x, y) and the
neighboring points.

In step 3, the magnitude of the gradient along the direction of the
gradient at points (x, y) is computed by linearly interpolating the clos-
est points in the 3 × 3 neighborhood of the point (x, y) (see Fig. 5).
In step 5, if the gradient magnitude of (x, y) is a local maximum, it
is considered as a good edge point. Then its position is refined by a
simple quadratic interpolation of the values of the gradient magnitude
between the 3 values in the gradient direction. The quadratic function
of gradient magnitude along the gradient direction can be written as:

f(l) = al2 + bl + c (1)

with l the distance to the point (x, y) and a, b and c unknown param-
eters. In Fig. 5, three points A, B and C is sufficient to solve a, b and
c. Then the offset l0 of the refined edge point to the point (x, y) can
be obtained by computing the derivative of f(l) and setting it zero:
df(l)

dl |l=l0= 0.
Remark that the sub-pixel refinement of Devernay’s detector is sim-

ilar to the one of the SIFT method [21] except that SIFT works on the
Laplacian value and uses a two-dimension quadric interpolation, while
Devernay’s detector works on the magnitude of gradient and uses a
one-dimensional quadric interpolation in the gradient direction.

Figure 5: Devernay sub-pixel precision edge detector. The vec-
tor −→g is the gradient direction at the point (x, y). The gradient
magnitude at point B is linearly interpolated by the gradient
magnitude at point A3 and A4. Similarily, the gradient magni-
tude at point C is linearly interpolated by the gradient magni-
tude at point A7 and A8. If point A has the gradient magnitude
bigger than B and C, it is considered as a good edge point.
Its position is refined by computing an offset through a quadric
interpolation along the direction of −→g .
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4.3 Convolution and sub-sampling of edge points

For the photos of strings, almost every pixel along each side of one
string is detected as edge point in sub-pixel precision. So there are
about 1000 edge points detected for a line of length about 1000 pix-
els. This large number of edge points give the possibility to further
reduce the detection and aliasing noise left by the detection through
a convolution followed by a sub-sampling. This process is similar to
the two-dimension case where the Gaussian blur about 0.8 ×

√
t2 − 1

is needed before a t-subsampling to avoid the aliasing [15]. A similar
rule can be applied here. But instead of a two-dimensional signal, we
have two one-dimension signals (x-coordinate and y-coordinate of edge
points) along the length of the line. The Gaussian convolution is per-
formed on two one-dimension signals separately. Since the edge points
are not regularly sampled along the line, a preliminary re-sampling
step is needed. This re-sampling is made along the length of the line
by taking a uniform sampling step, which is set to be m times smaller
than the average distance between two adjacent edge points. A linear
interpolation is used here to accelerate the re-sampling (see Fig. 6).
Assume the distance between two adjacent edge ponits (x1, y1) and
(x2, y2) is l and the re-sampling step is d. Then the re-sampled point
(x′, y′) can be expressed as

x′ =
d

l
(x2 − x1) + x1

y′ =
d

l
(y2 − y1) + y1.

Once the line is re-sampled, the Gaussian blur 0.8 ×
√
t2 − 1 can be

applied then followed by a sub-sampling with factor mt on the x and
y coordinates separately (the sub-sampling factor is mt because the
re-sampling step is m times smaller than the average distance between
two adjacent edge points).

Figure 6: Line re-sampling. The red points (x1, y1), (x2, y2), · · ·
are the edge points extracted by Devernay’s detector. They are
irregularly sampled along the line. The re-sampling (in green) is
along the length of the line with the uniform step d. The linear
interpolation is used to compute the re-sampled point fast.
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4.4 Computation of straightness

As have been presented before, the straightness of a line is defined
as the root-mean-square (RMS) distance from its edge points to their
corresponding linear regression line. Given a set of corrected edge
points (xui , yui)i=1,··· ,N which are supposed to be on a line, we compute
the linear regression line:

αxui + βyui − γ = 0 (2)

with tan 2θ = − 2(Axy−AxAy)
Vxx−Vyy

, α = sin θ, β = cos θ, Ax = 1
N

∑N
i=1 xui ,

Ay = 1
N

∑N
i=1 yui

, Axy = 1
N

∑N
i=1 xui

yui
, Vxx = 1

N

∑N
i=1(xui

− Ax)2,
Vyy = 1

N

∑N
i=1(yui

− Ay)2 and γ = Ax sin θ + Ay cos θ. Then the
straightness is computed as:

S =

√∑N
i=1 (αxui

+ βyui
− γ)2

N
. (3)

5 Some preliminary results

In this section, we just show some results to support our argument that
the opaque fishing string is more appropriate to evaluate the correction
precision. A good string should not have other imperfection aspects
which introduce some error susceptible to be mixed with the lens dis-
tortion. We hope that once the distorted line is ideally corrected by a
certain correction method, the straightness only reflects the correction
performance, but not affected by other factors.

In Fig. 7, the high frequency of the distorted sewing string, the
distorted tennis racket string and the distorted opaque fishing string
are compared to the straightness error of their corresponding corrected
strings. The almost superimposing high frequency oscillation means
that the high frequency of the distorted strings is not changed by the
lens distortion correction. In such case, the straightness error includes
the high frequency of the distorted strings and does not really reflect
the correction performance. So it is better to use the string which
contains the high frequency oscillation as small as possible. Among
the three types of strings, the opaque fishing string shows the smallest
such oscillation. The larger oscillation of the sewing string is due to
a variation of the thickness related to its twisted structure, while the
tennis racket string is simply too rigid to be stretched, even if this is not
apparent in Fig. 1b). So the opaque fishing string is more approriate
to evaluate the distortion correction precision.
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(a) The
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tennis racket
string

(c) The
opaque
fishing string
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