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Abstract

Image features detection and matching is a fundamental step in many computer
vision applications. A lot of methods have been proposed in recent years, with
the aim to extract image features invariant to a group of transformations. Even
if the state-of-art has not achieved the full invariance, many methods, like SIFT,
Harris-affine and Hessian-affine combining a robust descriptor, give sufficient
invariance for some practical applications. In contrast to the advance in the
invariance of feature detectors, the detection precision has not been paid enough
attention even if the repeatability and stability are extensively studied. In this
report, we focus on the SIFT method and measures its localization precision by
average localization error under a given geometric transform and localization
uncertainty by covariance matrix. These measurements can be easily extended
to other feature detectors. For those which are scale invariant, it can be shown
that the localization error and localization uncertainty both increase with the
scale of features.

1 Introduction

Recent years see the blossom of invariant feature points (regions) detector. Even
though they are more and more invariant to a group of image transformations
and illumination change, the detection error is always ignored and considered
isotropic. In fact the isotropy of localization error highly depends on the type of
feature detector used and the parameters set in the detection process. It is not
appropriate to say a feature detector is good if the detected features has homo-
geneous isotropic localization error. In fact, different feature detectors extract
different types of features and they are complementary. For example, Harris
corner-based detectors often select features on the corners, which have homo-
geneous isotropic localization error. Interestingly, human perception system
have the tendency to choose this kind of features [17]. In contrast, DoG-based
or Hessian-based detector prefer blob-like regions, which usually do not have
isotropic localization error. In particular, for some scale-invariant feature de-
tectors, their localization error increases with the scale [3, 43], for example SIFT
[21] and SURF [12]. By reviewing different feature detectors and descriptors,
we get the impression that almost all the detectors emphasize on the feature
selection or affine adapted neighbor estimation without paying attention to the
detection precision. Thus the detection precision is intrinsically decided by the
detection process itself and the image noise.



1.1 Feature detection

A typical input of many computer vision problems are a set of corresponding
features between two or several images, like camera calibration, image mosaick-
ing, object retrieval and 3D scene modeling. This raises the question how to
extract features from image and match them correctly. This problem can be di-
vided into three steps: feature detection, descriptor construction and descriptor
matching. The first two steps are closely related because some features detection
algorithms also give a region adapted to the image local structure, which is a
good candidate to construct a invariant descriptor. The third step is somewhat
independent to the first two.

To detect feature points/regions in image, an appropriate mathematic op-
erator is applied on the image and the response is thresheld to find the stable
features. Harris corner [11] is one of the first proposed feature point detector.
This detector computes auto-correlation matrix on each point in image, which
captures the local image structure. A criteria called cornerness is proposed to
select the points whose auto-correlation matrix has two big eigenvalues. And the
feature points are considered as the local maxima of cornerness. Harris corner
achieves rotation invariant by estimating the principal gradient direction of the
corner. But it is not scale invariant since a fixed-size image patch around the ex-
tracted corner is used to construct the descriptor. Several variants based on Har-
ris corner has been proposed. Multi-scale Harris [19] is simply to apply Harris
corner on images differently blurred by Gaussian convolution. But it is still not
scale invariant due to the fixed-size descriptor. Harris-Laplace [18, 19] obtains
the scale invariance by an iterative selection of the characteristic scale by LoG
(Laplace-of-Gaussian) operator for the feature points extracted by multi-scale
Harris. It is shown that multiple feature points for the same image structure
will converge to the same point and scale. Harris-Affine [18, 19, 39] is invariant
to affine image transformation. It begins with multi-scale Harris corners and
iteratively refines the location and estimates the affine neighborhood around the
point by some affine adaptation process based on the second moment matrix.
Hessian-Laplace [18, 19] (and Hessian-Affine) is similar to Harris-Laplace (and
Harris-Affine ) except that points are localized in space at the maxima of the
Hessian determinant. So Hessian-Laplace is scale and rotation invariant and
Hessian-Affine is affine invariant. Some other detectors are also designed to be
affine invariant, like an edge-based region detector [47, 45], an intensity-based
region detector [46, 47], an entropy-based region detector [44], and two inde-
pendently developed level line-based region detectors MSER (“maximally stable
extremal region”) [14] and LLD (“level line descriptor”) [31, 33, 32]. But all of
them are not yet fully affine invariant since they start with initial feature scales
and locations selected in a non-affine invariant manner [21].

Efforts are also dedicated to design distinctive and robust descriptors to
achieve affine invariance, such as distribution-based descriptors [15, 37, 48, 21,
1, 36], descriptors based on spatial-frequency techniques [10], differential de-
scriptors [5, 38] and moment-based descriptors [20]. But the fully affine invari-
ance is not yet obtained according to the extensive comparison [16]. Recently
a fully affine invariant region detector (ASIFT) is proposed by Morel and Yu
[26]. Their method is based on Lowe’s method [21] but simulates two missing
parameters left over by Lowe: latitude and longitude (two angles dening the
camera axis orientation). They mathematically proved that their method is

2



fully affine invariant, up to an arbitrary precision. For descriptor construction,
ASIFT follows SIFT method, which is almost the best with respect to the other
popular descriptors [16]. ASIFT has the assumption that 3D scene is piecewise
planar such that any deformation introduced by camera motion can be locally
well approximated by an affine transformation. This assumption is true for most
of natural scenes, but there still exist some scenes with strong 3D structure for
which ASIFT fails. It is worth to mention SIFT method here since it is the
first fully similarity invariant region detector combined with a distinctive and
robust descriptor. SIFT method can be recapitulated as follows: for each fea-
ture selected as the local extrema in 3D scale space approximated by difference
of Gaussian, a local image patch around this point along the dominant gradient
is extracted to construct the descriptor, which is a 3D histogram of gradient
location and orientation weighted by gradient magnitude. The robustness of
SIFT descriptor makes it also partially invariant to illumination change and
affine transformation.

The last step is to match descriptors. There are usually three types of strate-
gies: distance threshold, nearest neighbor distance threshold, Lowe’s nearest
neighbor distance ratio [21]. Lowe’s nearest neighbor distance ratio performs
well in practice when there is no or unique matching descriptor for one descrip-
tor. Recently an A Contrario matching criterion [35] is proposed to deal with
the situation where there are multiple matching descriptors.

1.2 Localization uncertainty

In this section, some previous work about the localization uncertainty is re-
viewed. It is necessary to distinguish “localization uncertainty” from “localiza-
tion error” to make the following context more clear.

Localization error means the absolute error in the detected feature position,
while localization uncertainty indicates the variation of error introduced in the
feature detection process. Localization uncertainty is a statistical term, which
is usually measured by covariance matrix. It depends only on the detection
process itself and can be evaluated on one image directly. But localization
error is always evaluated on a pair of images in previous work. The evaluation
is performed in the common framework that the ground truth transformation
between two images is known. In [22], localization error is evaluated at different
scales for multi-scale Harris corners and the average error is reported about
1 ∼ 3 pixels. In [19, 16], repeatability is used to evaluate the localization error
under different image transformation or illumination change for scale-invariant
detectors. In [7], more attention is paid to the localization error of Harris-like
detectors in terms of repeatability and information content. These evaluations
give an average localization error for a group of matched features. We remark
that the evaluation depends not only on the feature detection but also on the
feature matching. The distinctiveness and robustness of descriptor against the
undergone image transformation or illumination change plays also an important
role. Different errors besides detection precision are mixed in the evaluation.
Thus the evaluation does not only reflect the detection precision.

The complementary work to localization error is the localization uncertainty
measured by covariance matrix for each detected feature individually. In [17],
the author used two methods to estimate the covariance matrix for corner feature
and concluded that the accuracy of geometric computation is not improved by

3



incorporating the covariance matrix into optimization since covariance matrix
seems to be homogeneous isotropic. This is normal because the detector they
tested selects always corner-like features. In contrast, Brooks et al. [24] observed
accuracy improvement in fundamental matrix computation by incorporating the
estimated covariance matrix of Harris corner. Steele and Jaynes [42] on the
other hand focus on the detector and address the problem of feature inaccuracy
based on pixel noise. They use different noise models for pixel intensities and
propagate the related covariances through the detection process of the Förstner-
corner detector to come up with a covariance estimate for each feature point.
Orguner and Gustafsson [29] evaluate the accuracy for Harris corner points. The
analysis is built on the probability that pixels are the true corner in the region
around the corner estimate. For scale-invariant region feature, the covariance
matrix has different property from corner feature [3]. First, due to the focus on
interest regions, the shape of covariances will be in general anisotropic. Second,
the magnitude of covariances will vary significantly due to detection in scale
space.

Localization uncertainty only depends on the covariance matrix, while local-
ization error is influenced by more factors like the gradient, image blur and fea-
ture matching process. For scale-invariant feature detectors with sub-sampling,
the localization error and uncertainty both increase through scales. We pro-
posed to cancel the sub-sampling to obtain some improvement. In theory, for
continuous infinite resolution images, neither the localization uncertainty nor
the localization error will be improved by this modification. But in practice,
only digital images can be used and the computation will be more precise if the
sub-sampling is canceled. The improvement can be observed for localization
error if two images contain the same blur, while localization uncertainty does
not change a lot in any case. This phenomenon will be analyzed and explained.
In practice, two images do not always contain the same blur, which leads to
estimate the quantity of blur of both images and blur again the image which is
less blurry. This report begin with a review of SIFT method in section 2, which
makes the concept of localization error and localization uncertainty more con-
crete. Synthetic test of localization error is shown in section 3 for Lowe’s SIFT
and improved SIFT with some comparison and analysis. A method to estimate
and align the blur of two images is also proposed. In section 4, different methods
to compute localization uncertainty are compared. It is shown that localization
uncertainty increases through scale space if the image is well-sampled, whether
the sub-sampling is canceled or not.

2 SIFT method [21]

SIFT method is one of the most widely used feature region detectors. It is a good
candidate for our analysis of localization error/uncertainty because of its full
scale invariance. SIFT method is a complete algorithm including scale-invariant
feature detector, gradient-based descriptor and descriptor matching based on
nearest neighbor distance ratio. The scale-invariant feature detector relies on
3D scale-space implemented by difference of Gaussian due to its computational
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efficiency:

D(x, y, σ) =
(
G(x, y, kσ)−G(x, y, σ)

)
~ I(x, y) (1)

≈ (k − 1)σ2∆
(
G(x, y, σ) ~ I(x, y)

)
This means the Laplacian is approximated by the different of Gaussian. Remark
that the Laplacian is normalized by factor (k − 1)σ2, which in fact gives scale
invariance to the Laplacian threshold in SIFT method. The SIFT method gives
stable performance when k is smaller than

√
2. To get more efficiency, a sub-

sampling by 2 is also added in scale-space. All the images with the same size
belong to a common octave in scale space. SIFT scale space consists of several
octaves (Fig. 1): one octave contains Ninter+ 3 Gaussian blurred images with
the same resolution which are used to compute Ninter+2 difference-of-Gaussian
images. The local extrema is only detected on the Ninter in the middle (Ninter
is the number of intervals in an octave, the default value is 3). The Gaussian
blur is increased with the multiplicative factor 21/Ninter and thus k = 21/Ninter.
The 2-subsampling is performed on the image in octave which contains two
times the blur of the initial image of the same octave. This convolution and
2-subsampling procedure is repeated until the image is too small for feature
detection. It is easy to see that the sampling with respect to the blur is the
same for all octaves. So one image has the same nature as its counterparts in
the other octaves. This process simulates camera zoom-out and explains why
SIFT method is scale invariant.

With σ2 = 2σ1 in Eq. (1), the normalization factor has the relation-

ship: (k − 1)σ2
2 = 4(k − 1)σ2

1. This implies that ∆
(
G(x, y, σ2) ~ I(x, y)

)
=

1
4∆
(
G(x, y, σ1) ~ I(x, y)

)
. Is it true for all I(x, y) and pair (σ1, σ2) satis-

fying σ2 = 2σ1 ?
In 3D scale-space, features are selected as local extrema by comparing with

26 neighbors (see Fig. 1). Once a feature is extracted, its 3D position is refined
by a 3D interpolation, where comes from SIFT sub-pixel precision. Each feature
is assigned a principal direction by using the gradient direction and magnitude
in the neighborhood. A fixed-size (16 × 16 pixel) region around image feature
along its principal direction is extracted to construct the descriptor. This region
is divided into 4 × 4 sub-regions; in each sub-region, an orientation histogram
containing 8 directions is created by quantizing the gradient direction of each
sample weighted by gradient magnitude (Fig. 2). To make the detected features
useful, their 3D coordinate (location and scale) should be propagated back to
the original image.

2.1 Blur

Blur issue is important because the scale invariance in SIFT method is in fact
blur invariance. SIFT scale space is a representation of image with increasingly
Gaussian blur if it is viewed under the same resolution. SIFT method is based
on the assumption that Gaussian convolution can well approximate the blur
introduced by camera system and gives an aliasing-free image sub-sampling. In
[27], it shows that a well-sampled image contains Gaussian blur about β = 0.8
and an aliasing-free t-subsampling should be preceded by a Gaussian blur about
β ×
√
t2 − 1.
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Figure 1: Pyramid-like SIFT scale space: feature is selected as local extrema
(yellow point) by comparing 26 neighboring samples (red point).

Figure 2: Descriptor is constructed on a square region around feature whose
whose side direction is given by the principal gradient direction. Example of a
2× 2 descriptor array of orientation histograms (right) computed from an 8× 8
set of samples (left). The orientation histograms are quantized into 8 directions
and the length of each arrow corresponds to the magnitude of the histogram
entry.
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The above discussion concerns about the aliasing-free sub-sampling. How-
ever, the blur condition becomes different for up-sampling case. This argument
is based on the following simple equations:

∆
(
u(
x

2
,
y

2
)
)

=
1
4

(∆u)
(x

2
,
y

2

)
(2)

∂
(
u
(
x
2 ,

y
2

))
∂ •

=
1
2
∂u

∂ •

(x
2
,
y

2

)
(3)

which means the Laplacian is 4 times smaller and gradient is 2 times smaller if
an image is up-sampled by 2. Remark that the Laplacian is computed by finite
difference schema, but not by Eq. (1), which compensates the factor 1/4. This
relationship is only valid when image u is smooth enough. Fig. 3 shows a test
for a natural image. The image is first convolved by a Gaussian blur, then it
is up-sampled by factor 2. The Laplacian and gradient module are computed
on the original image and the up-sampled image respectively. The average and
standard deviation of the ratio of Laplacian m and that of the ratio of gradient
module n are computed:

m =
(∆u)

(
x
2 ,

y
2

)
∆
(
u(x2 ,

y
2 )
) (4)

n =

√(
∂u
∂x (x2 ,

y
2 )
)2

+
(
∂u
∂y (x2 ,

y
2 )
)2

√(
∂u( x2 ,

y
2 )

∂x

)2

+
(
∂u( x2 ,

y
2 )

∂y

)2
(5)

It is shown that Eq. (2) and (3) satisfy only if the added Gaussian blur is at
least about β = 1.6. This make the image blur become

√
1.62 + 0.82 ≈ 1.8. This

experiment is complementary to the one dealing with aliasing-free sub-sampling
in [27]. In Lowe’s SIFT, to increase the number of features, a pre-zoom by 2 is
used. For an image containing Gaussian blur 0.8, a 2-upsampling increases the
blur to be β = 1.6 = 0.8× 2, which is close to 1.8.

2.2 3D location refinement

Once the local extrema are extracted in 3D scale space, their position can be
refined under the assumption that image can be locally approximated by 2-
order Taylor expansion. Given a local extrema located at x = (x, y, σ), the
DoG function D(x) is expanded at x by:

D(x + ∆x) = D(x) + ∆xT
∂D

∂x
+ ∆xT

∂2D

∂x2
∆x (6)

The peak of this function is attained when its derivative is set to be zero, which
gives the offset ∆x = (∆x,∆y,∆σ)T :

∆x = (∆x,∆y,∆σ)T =
(
∂2D

∂x2

)−1
∂D

∂x
(7)

Sub-pixel precision is obtained with this interpolation and the final position
is x + ∆x. The refined scale with respect to the original image resolution is
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Figure 3: The image at top is convolved by a Gaussian function with standard
deviation σ before it is up-sampled by factor 2. The Laplacian value and gra-
dient module before and after the up-sampling are compared. Bottom left: the
average and standard deviation of ratio of the Laplacian value before and after
2-upsampling. Bottom right: the average and standard deviation of ratio of
gradient module before and after 2-upsampling.
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(σ + ∆σ) ·2oct with σ = σ0 ·2inter/Ninter (σ0 is the blur of the first image in one
octave, oct is the octave index, inter is the interval index and Ninter is the total
number of intervals in one octave). This refinement can also be extended to other
feature detectors because the method is relatively independent on the detector.
The gradient and Hessian matrix in Eq. (6) is computed by finite difference
schema from neighboring sample points. This method can be imprecise if the
image is not locally 2-order. A more robust method is to estimate gradient and
Hessian by least square minimization [34].

2.3 Improvement

We remark that the biggest error source in SIFT method is that the detected
features in scale space are projected back to the original image. Assume a
feature located at x with ideal position x0 disturbed by the absolute error ε:
x = x0 + ε. If this feature is detected in the i-th octave in SIFT scale space,
then its final position is 2ix = 2ix0 + 2iε. The error is increased by the factor
2i. This factor has no influence only if ε = 0. This gives the inspiration to
cancel the sub-sampling between octaves. The new schema is shown in Fig. 4.
Although this seems to be an one-step modification to SIFT method, there are
some details to look over.

Figure 4: Improved SIFT scale space with sub-sampling canceled. The number
of intervals in octave is increased through octaves.

First the Laplacian threshold, the most important threshold in SIFT to select
stable features. It is kept constant in SIFT method because it is scale invariant.
But with sub-sampling canceled, this threshold should be decreased through
octaves since images becomes more and more blurred. Compared to original
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SIFT scale space structure, the modified scale space have images equivalently
zoomed by 1, 2, 4, · · · through octaves. Thus according to Eq. (2), if the
images contain Gaussian blur bigger than 1.6, the Laplacian threshold should
be divided by 1, 4, 16, · · · . But the Laplacian in Eq. (2) is computed by finite
difference schema, which is not scale invariant. In fact, if the finite difference
schema is used in SIFT, it will be difficult to determine Laplacian threshold even
in one octave because Laplacian decreases with the increase of blur in image.
Scale normalized Laplacian in Eq. (1) enables an uniform Laplacian threshold
through octaves when the 2-subsampling is canceled. This can be shown by
upsampling a DoG function D(x, y) at a certain scale σ by factor 2:

D(x2 ,
y
2 , σ) =

(
G(
x

2
,
y

2
, kσ)−G(

x

2
,
y

2
, σ)
)

~ I(
x

2
,
y

2
) (8)

=
(
G(x, y, 2kσ)−G(x, y, 2σ)

)
~ I(

x

2
,
y

2
)

≈ (k − 1)(2σ)2∆
(
G(x, y, 2σ) ~ I(

x

2
,
y

2
)
)

= (k − 1)(2σ)2∆
(
I(
x

2
,
y

2
)
)

~G(x, y, 2σ)

= (k − 1)(2σ)2 1
α

(∆I)(
x

2
,
y

2
) ~G(x, y, 2σ)

= (k − 1)
4
α
σ2(∆I)(

x

2
,
y

2
) ~G(x, y, 2σ)

= (k − 1)
4
α
σ2∆

(
G(
x

2
,
y

2
, σ) ~ I(

x

2
,
y

2
)
)
.

According to Eq. (2), α = 4 when a blur bigger than 1.6 is added to image. Then,
D(x2 ,

y
2 , σ) = (k−1)σ2∆

(
G(x2 ,

y
2 , σ)~I(x2 ,

y
2 )
)

, which means the Laplacian value
does not change through octaves.

Second, Lowe’s SIFT descriptor is constructed from a region with fixed size
16 × 16 around extracted features. There is no problem if the scale change
between two compared images is 2i (i ∈ N ) because one feature will find its
correspondence at the same interval up to i octaves shift. So any fixed-size de-
scriptor capturing enough distinctive local information works in such situation.
But if the scale change between two image is 2i+δ (i ∈ N , 0 < δ < 1), then one
feature will not find its correspondence at the same interval. In such case, the
fixed-size descriptor will not cover the same image region and thus introduces
some false matchings. By considering this default, we propose that the descrip-
tor region has the size proportional to the Gaussian blur where the feature is
detected. This increases the overlap of covered region between correspondences
when scale change is 2i+δ (Fig. 5). In the other hand, the size of descriptor
becomes bigger and bigger through octaves if the sub-sampling is canceled. So
the sampling step becomes smaller and smaller with respect to blur. This is
not consistent with scale invariance. To keep SIFT scale invariance, the new
descriptor is sub-sampled again to make it as similar as possible to the original
SIFT(see Fig. 6). Thus the new SIFT framework is still scale-invariant.

Third, with increased blur through octaves, the step between two adjacent
intervals increases also by factor 2, 4, 16, · · · . Then the scale space is sampled
more and more sparsely through octaves. This makes it more difficult the 3D
interpolation refinement. In addition, SIFT descriptor is constructed approx-
imately on these sparse intervals without really interpolating a new interval.
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Figure 5: The right image is 22/3-subsampling of the left image. A feature in
the right image with blur σ corresponds to a feature with σ × 22/3 in the left
image. The fixed-size descriptor gives evidently different patch for a common
feature in two images (yellow patch in the left image via green patch in the right
image). The two patches (in green) look almost the same by using descriptor
with size proportional to blur.

Figure 6: SIFT descriptor is constructed by summarizing the gradient infor-
mation of a region around the detected feature. This region has fixed size
in Lowe’s SIFT. The gradient information is weighted by Gaussian weighting
function indicated by the overlaid circle. In improved SIFT, the region has
size proportional to blur and needs to be sub-sampled to maintain the scale
invariance since images are up-sampled. A 2-subsampling is shown on the right.
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This introduces also error. To compensate this effect, the number of intervals
is increased with the same factor through octaves (see Fig. 4). This means that
the up-sampling is performed also in the scale direction, just as that in x and
y directions in image. Remark that this up-sampling in the scale still keep the
scale invariance of Laplacian value.

For sub-pixel refinement, the sub-sampling removal has three-fold effect. On
the one hand, the assumption that image is locally 2-order is more valid with
the increase of Gaussian blur. This makes the 3D interpolation more precise.
On the other hand, the increase of Gaussian blur also makes it more difficult
to localize feature. The third point has already been mentioned: the back-
projection is already removed. Are the three factors are completely compensated
by each other? Theoretically the answer is yes. Given a local extrema x =

(x0, y0, σ0), its offset is given by Eq. (7): ∆x =
(
∂2D
∂x2

)−1
∂D
∂x . If the factor to

back project to the original resolution is 2, the final offset is 2∆x. If the error is
directly computed on 2-upsampled image, by Eq. (2), (3) (7) and (8), it gives:(

4
m2

∂2D
∂x2

)−1
4
mn

∂D
∂x = m

n

(
∂2D
∂x2

)−1
∂D
∂x = m∆x

n . According to Fig. 3, by adding
Gaussian blur bigger than 1.6, m

n is about 2 and the variation is ignorable.
Then the offset is about 2∆x, which means no improvement in precision is
obtained by canceling the sub-sampling between octaves. But in practice, we
do gain something due to the fact that the used image is digital. First, the
local extrema at integer pixel position is more precise in up-sampled image,
which means 3D refinement has a good departure point. Second, the gradient
and the Hessian computation is more precise on up-sampled image. Even if the
uncertainty of feature position is increased, a Ransac algorithm can be used
to post-process SIFT matchings to only keep the most precise ones. Remark
that if no blur is added to the image, the average of m

n is also about 2, but the
variance is rather high. Thus the computed offset of features is not reliable.

3 Absolute localization error evaluation

Absolute localization error of Lowe’s SIFT method is evaluated by a pair of
images in this section. We first review different precision evaluation procedures
and point out their drawbacks. We test the localization error more directly
under different geometric transformation.

3.1 Evaluation method

The most popular evaluation criteria is repeatability introduced in [19, 7], which
is defined as the ratio between the number of correspondences and the minimum
number of points detected in two images. Feature xa and xb correspond if:

• the error in relative point location is less than εp pixels: xa −H · xb < εp,
where εp is typically 1.5 pixels and H is the ground truth homography
between two images;

• 1 −
Rµa∩RHT µbH
Rµa∪RHT µbH

< εo where Rµ the detected region determined by the

shape matrix µ given by affine invariant interest point detector [19]; HTµbH
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is shape matrix projected to the other image; Rµa ∩RHTµbH is the inter-
section of regions and Rµa ∪RHTµbH is their union.

We argue that “repeatability” is not well adapted for localization error due to
the following reasons:

1. It is not sure that xa and xb is a good correspondence if the two above cri-
teria are satisfied. In fact the above two measures depend on the detected
scale. So it is not easy to find a universal threshold.

2. It is assumed that the scene is planar and the ground truth homography
between two images is estimated from some control points. But in practice,
we cannot have a completely planar scene. Even if it is, the camera lens
introduces some non-linear distortion. Thus a pair of real images are
related by a homography up to some error. This means the ground truth
itself is problematic.

3. The features detected in different scales do not have the same precision.
So it is better to evaluate in different octaves separately.

4. More precise matchings can be obtained by using a Ransac-based algo-
rithm.

There exists also other methods to evaluate the precision of interest points.
The most direct methods are based on visual inspections [2, 23], which depend
directly on human perception. Some methods suppose that the ground-truth
is known, which is not always true for many applications. Ground-truth is in
general created by human and relies on his symbolic interpretation of the image
and is therefore subjective. In [6], the edge detector performance is evaluated
based on receiver operating characteristic (ROC) curves. Edge detector output
is matched against ground truth to count true positive and false positive edge
pixels.

Instead of evaluating directly location precision of interest points, some other
criteria do not require the exact position of interest points. In [8, 13], authors
used projective invariants to evaluate interest points precision. But this kind
of methods needs scene composed of simple geometric objects, like polygons
or polyhedrals since the reference values are computed from scene measure-
ments. In [30], authors used four different criteria: alignment of the extracted
points, accuracy of the 3D reconstruction, accuracy of the epipolar geometry
and stability of the cross-ratio. In [4], another four global criteria are proposed:
collinearity, intersection at a single point, parallelism and localization on an
ellipse.

None of the above methods consider lens distortion or other optic system
aberrations in their precision evaluation procedure. For the methods requiring
scene composed of simple geometric objects, they are designed for some specific
model-based interest points detectors and not very adequate for SIFT points.
Moreover, since the reference measures are from the scene, the objects should
be constructed with high precision, which is very difficult. The repeatability
evaluation looks a good criteria for SIFT points. But the problem is that this
criteria is designed to be generic for different interest points detectors. Lens
distortion or “outliers” can easily affect the evaluation performance.
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Due to the above problems, we evaluate the absolute localization error in a
more direct way. Synthetic images are used in the test to avoid any mastur-
bation like lens distortion. A transformation is applied on a reference image
to obtain the second image. SIFT is applied on two images to extract feature
points. The associated SIFT descriptors are matched by nearest neighbor dis-
tance ratio. A Ransac-like parameter-free algorithm [25] is applied to eliminate
false matchings. A global homography is computed from the Ransac-verified
matchings by using a least-square method. The precision is evaluated as the
residual to this homography.

3.2 Test

The test is performed on five kinds of transformation: translation, rotation,
zoom, tilt and affine transformation. The pre-zoom in SIFT method make the
blur of the initial image about 1.6. Features are detected and matched by SIFT
method. The number of octaves is fixed to be four. The proposed evaluation
procedure is used and the error is computed respectively on different octaves.
Remark that the number of features decreases fast through octaves. There can
be not enough matchings on the third or fourth octave that the evaluation is not
very reliable, in particular in the case of tilt and affine transformation, which is
a hard task for SIFT.

Translation

Translation is the simplest case to test. For integer pixel translation, the evalu-
ation always gives zero error. This is because two images are exactly the same
up to an integer pixel translation. Error is observed when the translation is non-
integer pixel. The reason can be two-fold: first, if the reference image itself is a
little aliased, the second image is not exact and some artifact can be introduced;
second, the feature position refinement is performed by a 3D interpolation in
SIFT, which is based on the assumption that image can be locally approximated
by 2-order Taylor expansion. Thus the performance of 3D refinement depends
on the image regularity around local extrema. In addition, the implementation
of sub-pixel translation can also pose a problem: FFT interpolation is exact
but will introduces “ringing” artifact at the contours and image borders, while
spline interpolation is just an approximation to FFT interpolation. Here a 7-
order spline interpolation is used (see images in Fig. 7). Even this test is very
simple, it gives us the idea about the best precision that SIFT method can
achieve. The average and standard deviation of the residual error is recapitu-
lated in Table 3.2. It shows that the error increases through octave. Remark
that the integer translation (45, 32) gives zero error on the first octave, but on
the other octaves, error is observed because images are sub-sampled and trans-
lation becomes non-integer. In fact, the error is smaller when the translation is
close to integer or semi-integer.

Rotation

Rotation is another basic geometric transform in image processing. An exact
implementation by FFT is feasible by decomposing rotation into three shear
transforms. But it suffers also from “ringing” artifact as the translation case.
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octave −1 octave 0 octave 1 octave 2
(45, 32) 6.8e−5/5.4e−4 5.4e−5/1.4e−4 0.1202/0.09516 0.1475/0.09603
(45.1, 32.1) 0.02727/0.02277 0.02513/0.02253 0.1195/0.09369 0.1529/0.09976
(45.3, 32.3) 0.04100/0.03296 0.06049/0.04516 0.1219/0.09963 0.2403/0.2079
(45.5, 32.5) 0.01188/0.01516 0.07425/0.05799 0.1196/0.09577 0.2596/0.2162
(45.7, 32.7) 0.04466/0.03993 0.06434/0.05063 0.1230/0.09569 0.2851/0.2176
(45.9, 32.9) 0.02578/0.02106 0.02729/0.02631 0.1393/0.1131 0.2729/0.2114

Table 1: The average/standard deviation of residual error in translation case
for Lowe’s SIFT. The translation in x and y direction is (45, 32), (45.1, 32.1),
(45.3, 32.3), (45.5, 32.5), (45.7, 32.7) and (45.9, 32.9).

Thus a 7-order spline interpolation is used like in translation test (see images
in Fig. 7). As the evaluation shown in Table 3.2, more close to 0◦ or 90◦ is
the rotation, more small is the error. This is due to the error in orientation
estimation of feature in SIFT method. This leads to incorrect descriptor and
thus to false matchings. The same phenomenon as the translation case is that
the error increases through octaves.

octave −1 octave 0 octave 1 octave 2
15◦ 0.03917/0.03254 0.06778/0.04967 0.1353/0.09935 0.3101/0.2485
25◦ 0.04381/0.03431 0.07788/0.05160 0.1544/0.09405 0.3289/0.2262
35◦ 0.04924/0.03434 0.08954/0.06176 0.1725/0.1056 0.3866/0.2547
45◦ 0.05201/0.03729 0.08964/0.06092 0.1772/0.1241 0.4791/0.4057
55◦ 0.05311/0.03959 0.08459/0.05609 0.1864/0.1362 0.4375/0.3382
65◦ 0.04785/0.03788 0.07989/0.05578 0.1393/0.08710 0.3472/0.2120
75◦ 0.04101/0.03350 0.06352/0.04420 0.1352/0.09963 0.2717/0.1656
85◦ 0.03262/0.02661 0.05160/0.03899 0.1206/0.1100 0.2076/0.1510

Table 2: The average/standard deviation of residual error in rotation case for
Lowe’s SIFT. The rotation angle varies from 15◦ to 85◦ with the step of 10◦.

Zoom

In case of zoom, the right image is generated by blurring the left image with√
t2 − 1 × 0.8 followed by t-subsampling with t the scale change between two

images. Another approach to obtain the right image is to zoom in the left image
by t. The first approach is used here because the second approach will increase
an image blur to t × 0.8. This is not consistent with the assumption that a
well-sampled image has Gaussian blur 0.8.

It is more difficult to deal with zoom than rotation and translation. Even if
theoretically SIFT is scale invariant, in practice the scale invariance is disturbed
a lot by scale quantization and blur issue. SIFT scale invariance is in fact blur
invariance. That is, for two matched features, their associated descriptors are
identical if they are compared at the same resolution. To be more clear, the
most important lemma in [27] is cited here:
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Figure 7: First row: original image. Second and third row: image translated by
(45, 32), (45.1, 32.1), (45.3, 32.3), (45.5, 32.5), (45.7, 32.7), (45.9, 32.9). Fourth
and fifth row: image rotated by 15◦, 25◦, 35◦, 45◦, 55◦, 65◦, 75◦, 85◦.

Figure 8: First row: image sub-sampled by factor 21/6, 22/6, 23/6, 24/6, 25/6,
2. Second row: image transformed by tilt with t equal to 21/12, 22/12, 23/12,
24/12, 25/12, 26/12. Third row: image transformed by affine transformation with
φ = 37◦, ψ = 24◦ and t equal to 21/12, 22/12, 23/12, 24/12, 25/12, 26/12.
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Lemma 1 Let u and v be two digital images that are frontal snapshots of the
same continuous flat image u0, u := S1GβHλu0 and v =: S1GδHµu0, taken at
different distances, with different Gaussian blurs and possibly different sampling
rates. Let w(σ,x) = (Gσu0)(x) denote the scale space of u0. Then the scale
spaces of u and v are

u(σ,x) = w(λ
√
σ2 + β2, λx) and v(σ,x) = w(µ

√
σ2 + δ2, µx)

If (s0,x0) is a key point of w satisfying s0 ≥ max(λβ, µδ), then it corresponds
to a key point of u at the scale σ1 such that s0 = λ

√
σ2

1 + β2, whose SIFT
descriptor is sampled with mesh

√
σ2

1 + β2. In the same way (s0, x0) corresponds
to a key point of v at scale σ2 such that s0 = µ

√
σ2

2 + δ2, whose SIFT descriptor
is sampled with mesh

√
σ2

2 + δ2.

S1 is the 1-sampling operation applied on continuous image to obtain a digital
image; Hλ is sub-sampling of factor λ; Gβ is the Gaussian convolution with
standard deviation β. Gβ and Gδ are camera blur applied on the infinite
resolution image (blur free) before 1-sampling to avoid aliasing. The above
lemma is proved in the continuous setting under the assumption that Gaussian
blur performed by SIFT method approximates well the camera blur and gives
aliasing-free images.

This lemma is easier to understand by an example with µ/λ = 2. Then
s0 =

√
σ2

1 + β2 = 2
√
σ2

2 + δ2. Assume a pair of correspondence: fu in u and
fv in v. fu lies on the scale two times coarser than fv, and fu’s descriptor
has sampling step two times bigger than fv’s descriptor. SIFT’s dyadic scale
space structure is adaptive to this case: u and v ideally superposes by one
octave shift (if the pre-zoom in SIFT is not considered here). This is true for
all cases with µ/λ = 2i, i ∈ N . So the localization error is zero up to machine
precision. But the case becomes more complicated when µ/λ 6= 2i. Assume
µ/λ = 2i+ε, i ∈ N , 0 < ε < 1, then u and v never superpose in scale space due
to the contradiction between SIFT scale space dyadic structure and µ/λ = 2i+ε.

It is special when ε = s/Ninter, s = 0, 1, · · · , Ninter − 1 (Ninter is the
number of intervals in one octave). Now assume Ninter = 3 and s = 1, then
µ/λ = 21/3, then fu lies on the scale 21/3 times blurred than fv. This coincides
with the fact that one SIFT octave is divided into Ninter = 3 intervals (Fig. 1).
For fu on interval s of octave o, fv on interval s+ 1 of octave o containing blur
21/3 bigger. But the problem rises when 3D refinement (in space and scale) is
performed on local extrema. 3D refinement is sensible to blur so the refinement
in space localization and scale of fu and fv will be different. And the region
used for descriptor has the size proportional to the refined scale, which can also
introduce error in descriptor and possibly leads to false matchings: if there exists
a feature f ′u very close to fu, then little error in descriptor can make fv matched
by f ′u, instead of fu. But the introduced error is particularly small, Ransac-like
algorithm does not guarantee to remove this kind of false matchings.

The most general case occurs when µ/λ is any value. In such case, no
features extracted in scale space is good candidate for matching because the
blur can never be equal: λ

√
σ2

1 + β2 6= µ
√
σ2

2 + δ2. Depending on the per-
formance of 3D refinement, more accurate blur information can be estimated.
But even with the correct blur (λ

√
σ2

1 + β2 = µ
√
σ2

2 + δ2), the descriptor is
always constructed from the region extracted in the closest interval (instead of
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octave −1 octave 0 octave 1 octave 2
21/6 0.2333/0.1193 0.2399/0.1414 0.3136/0.2050 0.4557/0.3383
22/6 0.2259/0.1249 0.2240/0.1307 0.2054/0.1479 0.2834/0.1700
23/6 0.2274/0.1265 0.1753/0.1103 0.1690/0.1175 0.3664/0.2801
24/6 0.2639/0.1852 0.1474/0.08682 0.1425/0.09033 0.1737/0.1230
25/6 0.1705/0.1015 0.1571/0.08692 0.1731/0.1114 0.1993/0.1158
26/6 0.1113/0.07107 0.03163/0.02510 0.03320/0.03017 0.02933/0.02641

Table 3: The average/standard deviation of residual error in zoom case for
Lowe’s SIFT. The zoom factor is 21/6, 22/6, 23/6, 24/6, 25/6 and 26/6.

interpolating a region). In addition, the blur is only used to determine the size
of region for descriptor. But the region is not sampled on the mesh mentioned
in Lemma 1. This means the descriptor is just approximative and can lead to
false matchings. Due to all of the above reasons, the error in the case of zoom
is bigger than the case of translation and rotation (Table 3.2).

The above problem implies that in SIFT method the initial blur in image
affects SIFT matching performance. The Gaussian blur performed by SIFT in
scale space is based on the initial blur estimation. With incorrect estimation,
the resulted images in scale space are too or not enough blurred. This leads to
inaccurate feature position and scale refinement, thus to inaccurate descriptor.

The evaluation is shown in Table 3.2. In the first octave, the left image has
no matchings with the right image when the scale change is 2. But in the other
octaves, the precision is higher when the scale change between two images is
close to 2. This can be explained by two limit scale changes: 2 and 21/6. For
example, if the scale change is 2, octave 2 of the left image’s scale space almost
superposes octave 1 of the right image’s scale space. Thus only the features
in the left image are reprojected to original image resolution; while for scale
change of 21/6, almost all the matchings features are found on the same octave
and both are reprojected and thus introduce more error.

Affine transformation

Affine transformation is still more difficult. Affine transformation A can be
decomposed by SVD (Singular Value Decomposition):

A = HλR1(ψ)TtR2(φ) = λ

(
cosψ −sinψ
sinψ cosψ

)(
t 0
0 1

)(
cosφ −sinφ
sinφ cosφ

)
(9)

with R1(ψ) and R2(φ) rotatin matrix, Tt a tilt and Hλ an expansion of λ.
Rotation and zoom have been already analyzed before, the only new element
here is the tilt. Without loss of generality, assume t < 1, the tilt Tt sub-
samples the image by factor t in x-direction without changing the resolution in
y-direction. The tilt is not consistent with Gaussian blur performed in SIFT
scale space because Gaussian blur is isotropic but tilt is not. More precisely,
to attain blur (scale) invariance, on one hand, in y-direction, fu should be on
scale 1

t times coarser than fv; at the other hand, in x-direction, fu should be
on the same scale as fv. This inconsistency is an extra error source besides the
previously mentioned errors. Affine transformation or tilt is a challenge for SIFT
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octave −1 octave 0 octave 1 octave 2
21/12 0.1795/0.1149 0.1672/0.1025 0.2324/0.1485 0.3481/0.1906
22/12 0.1626/0.1108 0.1991/0.1340 0.3305/0.1997 0.6024/0.4363
23/12 0.1721/0.1037 0.2512/0.1642 0.4125/0.2843 0.7197/0.4508
24/12 0.1877/0.1231 0.2743/0.1783 0.4941/0.3351 0.8789/0.5487
25/12 0.2370/0.1405 0.2915/0.1882 0.5619/0.3951 1.0779/0.5896
26/12 0.2391/0.1305 0.3358/0.2118 0.6287/0.3868 1.0522/0.5904

Table 4: The average/standard deviation of residual error in tilt case for Lowe’s
SIFT. φ = 0◦, ψ = 0◦ and t is 21/12, 22/12, 23/12, 24/12, 25/12 and 26/12.

octave −1 octave 0 octave 1 octave 2
21/12 0.2024/0.1192 0.1989/0.1161 0.3231/0.2552 0.6415/0.4839
22/12 0.1722/0.1069 0.2055/0.1335 0.3915/0.2671 0.7809/0.5571
23/12 0.1708/0.1101 0.2573/0.1724 0.4605/0.3552 0.7238/0.4215
24/12 0.1926/0.1302 0.2538/0.1439 0.5094/0.3415 0.8436/0.5008
25/12 0.2475/0.1559 0.2999/0.1834 0.6134/0.4374 0.7514/0.4538
26/12 0.2517/0.1414 0.3341/0.1921 0.5596/0.3058 0.8972/0.7274

Table 5: The average and standard deviation of error in affine transformation
case for Lowe’s SIFT. φ = 37◦, ψ = 24◦ and t is 21/12, 22/12, 23/12, 24/12, 25/12

and 26/12.

because it is experimentally shown that SIFT works only with transition tilt
smaller than 2.5 [26]. Thus an affine transformation or a tilt is more error-prone
than zoom and rotation. In Table 3.2, a pure tilt transformation is evaluated
with t varying from 21/12 to 26/12. The error increase with t because it is
difficult for SIFT to match correctly the features with big t. In Table 3.2, an
affine transformation is tested with φ = 37◦, ψ = 24◦ and t varying from 21/12

to 26/12. Remark that in case of tilt and affine transformation, fewer matchings
are found in coarse octaves. So the error evaluation can be less reliable.

Homography

Homography can describe any transformation between two images of a plane
scene viewed by an ideal pinhole camera. Any homography H : (x, y) →
(X,Y ) = (F1(x, y), F2(x, y)) can be locally approximated by an affine trans-
formation around each point (x0, y0)→ (X0, Y0) with 1-order Taylor expansion:(
X −X0

Y − Y0

)
=

(
∂F1
∂x (x0, y0) ∂F1

∂y (x0, y0)
∂F2
∂x (x0, y0) ∂F2

∂y (x0, y0)

)(
x− x0

y − y0

)
+O

(
(x− x0)2 + (y − y0)2

(x− x0)2 + (y − y0)2

)
At point (i, j), the local zoom factor in two orthogonal directions t1(i, j), t2(i, j)
can be computed by decomposing the corresponding affine transformationA(i, j)
like Eq.( 9). If t1(i, j) and t2(i, j) are both bigger than 1 for all i, j, image is com-
pressed nowhere and H can be directly applied on image. If t1(i, j) (or t2(i, j)) is
smaller than 1, then there is a sub-sampling around i, j along the corresponding
direction. In such case, a pre-zoom of factor 1

t1
(or 1

t2
) is needed around (i, j)
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along the corresponding direction before applying H to avoid aliasing. But this
point-wise pre-zoom is not feasible since t1(i, j) (or t2(i, j)) differs from point
to point. It is neither feasible to pre-zoom image by factor 1

min(i,j)(t1(i,j)) and
1

min(i,j)(t2(i,j)) separately in two directions since the direction φ(i, j) differs from
point to point and a rotation commutes only with an isotropic zoom. So the
only solution is first to compute t = min(i,j) (t1(i, j), t2(i, j)). If t < 1, a global
pre-zoom 1

t is applied on image. With this adapted anti-aliasing pre-zoom, H
can be safely applied on an image. Afterwards, to cancel the pre-zoom, we
should again do a zoom-out with the same factor t. As always, a Gaussian blur

0.8 ×
√

1
t2 − 1 is required before sub-sampling. The algorithm is recapitulated

in Algorithm 1. It can be proven that t = min(i,j)(t1(i, j), t2(i, j)) can be com-
puted just on four corners of image (PROOF NEEDED). The resulted image
will be a little blur since the Gaussian blur applied is adapted to the biggest
local zoom-out.

Algorithm 1 (Anti-aliasing homography)

Input: image I, homography H
Output: image g(I,H) = I ◦H−1

At each corner of I compute the Jacobian J of H and the SVD of J.
Take t the smallest among these 8 singular values.

Let S =

s 0 0
0 s 0
0 0 1

 with s = max( 1
t , 1).

if t(H) < 1 then
I = g(I,SH);

Convolve I with Gaussian kernel of standard deviation 0.8×
√

1
t2 − 1;

Replace H by the zoom-out matrix S−1 =

t 0 0
0 t 0
0 0 1


end
Return image I ◦H−1, computed by Fourier interpolation or other
high-order interpolation.

Conclusion

Different tests have been performed to evaluate SIFT localization error. But
as we have seen, this evaluation depends not only on localization error of SIFT
detector, but also a lot on SIFT descriptor and matching performance. SIFT de-
tector precision is mainly determined by local Laplacian extrema extraction and
3D interpolation. SIFT descriptor is constructed by summarizing the gradient
information of a region with size proportional to blur. The blur value is correct
only when the initial image blur is well estimated and the interpolation in scale
direction is well performed. For computational efficiency, the interpolated blur
is only used to decide the size of region for descriptor. No new interval is inter-
polated between two intervals. The region for descriptor is extracted from the
closest existing interval. This can introduce error in descriptor and lead to false
matchings.
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The tests can be divided into two groups. One group with scale change:
zoom, tilt and affine transformation. The other without scale change: trans-
lation and rotation. Both groups suffer from the above error factors. But
the group without scale change suffers less from the blur issue than the group
with scale change because scale change leads to different performance in 3D
interpolation for a feature and its correspondence. For all transformations, the
error increases with octaves. This is normal because all the features are finally
projected back to the original image. For translation and rotation, inaccurate
descriptor does not affect a lot the evaluation result because this descriptor in-
accuracy caused by blur issue is quite similar for the left and right image when
there is no scale change between them. So the matching can still be reliable.
Rotation has an error bigger than translation because the rotation case suffers
also from the imprecise estimation of the principal orientation of features. This
can be seen from precision recapitulation for rotation case in Table 3.2: better
precision is obtained when the rotation angle is close to 0◦ or 90◦. We think that
in translation and rotation case, the error reflects the SIFT detection accuracy
itself without disturbed a lot by matching error. For tilt and affine transfor-
mation, SIFT even does not find enough matchings in octave 3 and 4 because
SIFT is only partially invariant against affine transformation and the number
of features decrease through octaves. In such case, Ransac-like algorithm does
not work well and some curves are stepped, which are not very reliable. Remark
that this kind of evaluation depends not only on detector’s localization capacity,
but also on the blur issue, descriptor and matching error.

3.3 Improvement

In this section, the improvement in section 2.3 is evaluated. The pre-zoom
in SIFT method makes the initial blur of image about 1.6. The evaluation is
still disturbed by previously mentioned error factors if there is scale change
between two images: blur estimate error, inaccurate descriptor and false match-
ings. This kind of error is amplified because the removal of sub-sampling makes
images more blurred and can lead to more error in blur. In the other hand,
the more blurred images can also make 3D refinement more precise because the
assumption that image can be locally approximated by 2-order Taylor expan-
sion is more valid. For translation and rotation, they benefit from the precision
improvement of 3D interpolation. So the precision is kept and even improved
through octaves (see Table 3.3 and 3.3). But for the zoom, tilt and affine trans-
formation which contain a scale change, the error incurred by blur issue plays a
more important role and prevails over the gain in precision of 3D interpolation.
So the improvement in precision in not evident compared with Lowe’s SIFT.
(see Table 3.3, 3.3, and 3.3).

4 Localization uncertainty

Localization uncertainty is more adapted to evaluate the performance of detec-
tor since it only depends on detection process. One image is enough to evaluate
localization uncertainty. Thus the error factors like blur inconsistency and in-
accurate descriptor do not have influence because they only introduce errors
when features are matched. As indicated in [17, 3], localization uncertainty is
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octave −1 octave 0 octave 1 octave 2
(45, 32) 6.8e−5/5.4e−4 2.3e−4/1.4e−3 9.1e−4/3.0e−3 3.9e−3/7.4e−3
(45.1, 32.1) 0.03043/0.02880 0.02005/0.01794 0.02073/0.02067 0.01879/0.01830
(45.3, 32.3) 0.04140/0.03352 0.02918/0.02393 0.02863/0.02510 0.03208/0.02951
(45.5, 32.5) 0.01164/0.01493 2.8e−4/1.1e−3 7.7e−4/2.4e−3 4.2e−3/7.6e−3
(45.7, 32.7) 0.04383/0.03824 0.02901/0.02381 0.03209/0.03125 0.02735/0.02250
(45.9, 32.9) 0.02609/0.02158 0.02154/0.02003 0.01856/0.01568 0.01686/0.01984

Table 6: The average/standard deviation of residual error in translation case
for improved SIFT. The translation in x and y direction is (45, 32), (45.1, 32.1),
(45.3, 32.3), (45.5, 32.5), (45.7, 32.7) and (45.9, 32.9).

octave −1 octave 0 octave 1 octave 2
15◦ 0.03885/0.03174 0.02426/0.01923 0.02023/0.01699 0.01671/0.01309
25◦ 0.04279/0.03197 0.02938/0.02256 0.02689/0.02276 0.01659/0.01470
35◦ 0.05023/0.03590 0.03131/0.02303 0.02446/0.01936 0.02787/0.02257
45◦ 0.05084/0.03535 0.03176/0.02172 0.02642/0.02090 0.02807/0.02685
55◦ 0.05337/0.03985 0.03149/0.02399 0.02445/0.01894 0.02257/0.02201
65◦ 0.04915/0.03965 0.02924/0.02250 0.02510/0.02360 0.01987/0.01771
75◦ 0.04017/0.03175 0.02472/0.01969 0.01911/0.01517 0.01496/0.01095
85◦ 0.03277/0.02665 0.02297/0.01903 0.01908/0.01603 0.02305/0.01893

Table 7: The average/standard deviation of residual error in rotation case for
improved SIFT. The rotation angle varies from 15◦ to 85◦ with the step of 10◦.

octave −1 octave 0 octave 1 octave 2
21/6 0.2336/0.1205 0.2403/0.1403 0.2877/0.1632 0.3947/0.2697
22/6 0.2303/0.1304 0.2234/0.1231 0.1800/0.1340 0.2012/0.1168
23/6 0.2324/0.1340 0.1644/0.09814 0.1281/0.0841 0.2094/0.1471
24/6 0.2609/0.1847 0.1516/0.09282 0.1222/0.07958 0.1200/0.09484
25/6 0.1697/0.1017 0.1571/0.08651 0.1497/0.09481 0.1953/0.1264
26/6 0.1242/0.07303 0.03078/0.02087 0.01993/0.01506 0.02534/0.02320

Table 8: The average/standard deviation of residual error in zoom case for
improved SIFT. The zoom factor is 21/6, 22/6, 23/6, 24/6, 25/6 and 26/6.
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octave −1 octave 0 octave 1 octave 2
21/12 0.1800/0.1153 0.1795/0.1122 0.2373/0.1737 0.3202/0.2012
22/12 0.1601/0.1077 0.2086/0.1427 0.3604/0.2620 0.4791/0.3165
23/12 0.1657/0.09487 0.2528/0.1621 0.3953/0.3079 0.7354/0.4808
24/12 0.1873/0.1214 0.2713/0.1681 0.4825/0.3372 0.7222/0.3998
25/12 0.2357/0.1389 0.2946/0.1813 0.5678/0.4029 0.9433/0.5110
26/12 0.2400/0.1301 0.3223/0.2003 0.6022/0.4352 1.1887/0.6242

Table 9: The average/standard deviation of residual error in tilt case for im-
proved SIFT. φ = 0◦, ψ = 0◦ and t is 21/12, 22/12, 23/12, 24/12, 25/12 and
26/12.

octave −1 octave 0 octave 1 octave 2
21/12 0.1999/0.1170 0.1880/0.1186 0.2283/0.1892 0.3613/0.2570
22/12 0.1749/0.1090 0.2007/0.1414 0.2979/0.1829 0.5280/0.3677
23/12 0.1687/0.1073 0.2384/0.1573 0.3800/0.2362 0.6316/0.4205
24/12 0.1954/0.1353 0.2697/0.1692 0.4350/0.2547 0.6980/0.3401
25/12 0.2431/0.1485 0.3007/0.1812 0.5334/0.3965 0.7264/0.3358
26/12 0.2557/0.1430 0.3314/0.2006 0.6456/0.4070 0.8707/0.4386

Table 10: The average/standard deviation of residual error in affine transfor-
mation case for improved SIFT. φ = 37◦, ψ = 24◦ and t is 21/12, 22/12, 23/12,
24/12, 25/12 and 26/12.

usually measured as the inverse of Hessian matrix, which can be computed in
different manners: residual-based approach [28, 41], derivative-based approach
[9, 40] and direct approach [3].

The residual-based approach evaluates the residual of self-matching, which
is similar to that used in Harris corner. Let D(i, j) be the DoG (Difference of
Gaussian) at a certain scale in SIFT scale space (D(i, j) is replaced by gray-level
I(i, j) if the evaluation is on gray-level image). The residual of self-matching
for DoG at point (i, j):

J(x, y) =
1
2

∑
(p,q)

wp,q

(
D(i+ p+ x, j + q + y)−D(i+ p, j + q)

)2

(10)

where (p, q) is the displacement in a neighborhood around (i, j), and wp,q is an
appropriate (Gaussian) weight. J(x, y) is a continuous function in x and y if
I(i, j) is appropriately interpolated. J(x, y) can be approximated by a quadratic
function g(x, y) over a neighborhood of (0, 0) in the form

g(x, y) =
1
2

(n1x
2 + 2n2xy + n3y

2) (11)

=
1
2
(
x y

)
H

(
x
y

)
with the Hessian matrix H in the form:

H =
(
h11 h12

h12 h22

)
(12)
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h11, h12 and h22 can be computed by a weighted least square problem:

hT = (h11, h12, h22) = argmin
(h11,h12,h22)

∫ ∫
X
w(x, y) (J(x, y)− g(x, y))2

dxdy (13)

with w(x, y) an appropriate weight. A linear system is obtained by differentiat-
ing the above weighted sum with respect to h11, h12 and h22 respectively and
letting the result be 0:

1
2
Ah = b (14)

with A, h and b defined as:

A =
∫ ∫

X
w(x, y)m(x, y)m(x, y)T dxdy

h =
(
h11 h12 h22

)T
b =

∫ ∫
X
w(x, y)J(x, y)m(x, y)dxdy

and m(x, y) = (x2, 2xy, y2)T . H is then obtained by Eq. (12) and covariance
matrix is defined as the inverse of Hessian matrix H:

Σ = H−1 (15)

A default of residual-based approach is that H (and Σ) is not necessarily
positive-definite. This contradicts with the definition of covariance matrix.

The derivative-based approach approximates Eq. (10) by developing D(i +
p+ x, j + q + y)−D(i+ p, j + q) via 1-order Taylor expansion:

J(x, y) =
1
2

∑
(p,q)

wp,q (xDx(i+ p) + yDy(j + q))2 (16)

=
1
2
(
x y

)
H

(
x
y

)
with Dx, Dy 1-order partial derivative of D. This is a strong assumption that
D(i, j) can be locally approximated by 1-order Taylor expansion. The Hessian
matrix has the explicit form:

H =
( ∑

p,q wp,qD
2
x

∑
p,q wp,qDxDy∑

p,q wp,qDxDy

∑
p,q wp,qD

2
y

)
(17)

The covariance matrix is again defined as the inverse of the Hessian: Σ = H−1.
A more direct approach for covariance matrix is to compute the Hessian by

finite difference schema:

H =
(
Dxx Dxy

Dxy Dyy

)
(18)

with Dxx, Dxy and Dyy the second-order derivative of D. At a local extrema
(i, j), approximate its DoG by 2-order Taylor expansion:

D(i+ ∆x, j + ∆y) = D(i, j) +
(
Dx(i, j) Dy(i, j)

)(∆x
∆y

)
(19)

+
1
2
(
∆x ∆y

)
H

(
∆x
∆y

)
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Since SIFT detector selects local extrema, the gradient
(
Dx(i, j) Dy(i, j)

)
is

close to zero, while the Hessian H captures the curvature at the feature (i, j).
When point (i, j) is at a local minima, H is definite-positive; while H is definite-
negative when (i, j) is at local maxima. Since the covariance matrix is always
positive-definitive, the covariance matrix is finally in the form:

Σ = ±H−1 (20)

with positive sign when point (i, j) is at local minima and negative sign when
(i, j) is at local maxima. To make the estimation of more robust, H is obtained
by weighting Hessian matrix in a neighborhood around (i, j).

Σ =

 ∑
(i,j)∈Np

w(i, j)
(
Dxx(i, j) Dxy(i, j)
Dxy(i, j) Dyy(i, j)

)−1

(21)

The above three methods to compute the covariance matrix can give different
result. We try to interpret them in the same framework and find which one is the
most appropriate for SIFT features. Eq. (10) can be interpreted more properly
by developing D(i+p+x, j+q+y)−D(i+p, j+q) via 2-order Taylor expansion:

J(x, y) =
1
2

∑
(p,q)

wp,q

(
D(i+ p+ x, j + q + y)−D(i+ p, j + q)

)2

(22)

=
1
2

∑
(p,q)

wp,q

( (
x y

)(Dx(i+ p, j + q)
Dy(i+ p, j + q)

)
+

1
2
(
x y

)(Dxx(i, j) Dxy(i, j)
Dxy(i, j) Dyy(i, j)

)(
x
y

))2

=
1
2

∑
(p,q)

1
4
wp,q

((
x y

)(Dxx(i+ p, j + q) Dxy(i+ p, j + q)
Dxy(i+ p, j + q) Dyy(i+ p, j + q)

)(
x
y

))2

(
Dx(i+ p, j + q) Dy(i+ p, j + q)

)T is set to zero under the assumption that
the gradient of points in a small neighborhood of a local extrema is almost zero.
This assumption is true when the image is enough blurred and a local extrema
pixel looks similar to its neighboring pixels. The above expansion implies that
Hessian matrix satisfies:(

x y
)
H

(
x
y

)
(23)

=
∑
(p,q)

1
4
wp,q

((
x y

)(Dxx(i+ p, j + q) Dxy(i+ p, j + q)
Dxy(i+ p, j + q) Dyy(i+ p, j + q)

)(
x
y

))2

This is contradictory because the left side is 2-order while the right side is 4-
order. Thus the residual-based approach is not appropriate to SIFT features. In
fact, residual-based approach becomes exactly the same as the direct approach
by removing the square in Eq. (10).

For the derivative-based approach, Eq. (16) is close to zero if the gradient
(i+ p, j+ q) is close to zero. This is valid under the same assumption as before.

In Lowe’s SIFT, images are blurred and sub-sampled by 2 through octaves.
All the images are well sampled and each image has the same nature in blur
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as its counterparts on the same interval in the other octaves. These images
are not enough blurred and the above assumption is thus not valid. So the
above three approaches for Hessian matrix give the similarly reasonable result
(see Fig. 9)). On the other hand, for the improved SIFT, images become more
and more blurred through octaves due to the removal of sub-sampling. Then
the assumption is also more valid in coarse octaves. The consequence is that
residual-based approach and derivative-based approach give Hessian matrix with
too small eigenvalues in coarse octaves (see Fig. 9). So these two approaches are
not very adaptive for improved SIFT schema. Only the direct approach gives
a reasonable estimation of Hessian matrix for both Lowe’s SIFT and improved
SIFT.

Figure 9: Comparaison of three approaches of Hessian matrix computation
on the third octave. Left: Lowe’s SIFT. Right: improved SIFT without sub-
sampling between octaves. The pre-zoom is used in both SIFT schema. The
covariance matrix is plot as ellipse on the image. The uncertainty is proportional
to the size of ellipse. Red indicates the direct approach, green for residual based
approach and blue for derivative based approach. Remark that three approaches
give the similar Hessian matrix for Lowe’s SIFT, while only the direct approach
gives the reasonable Hessian matrix for improved SIFT.

In localization error evaluation, the improvement in precision has been ob-
served in translation and rotation case while it is not very evident in case of
zoom, tilt or affine transformation due to blur inconsistency and inaccurate de-
scriptor. The localization uncertainty has the advantage that it depends only
on the detection process itself and does not suffer from other errors. In Lowe’s
SIFT, the Hessian matrix H can be computed by any of the three approaches on
the scale σ where the local extrema x = (x, y, σ) is detected. More precisely, the
Hessian matrix should be computed on an interpolated sub-interval σ̂ = σ+∆σ,
which is determined by the 3D interpolation in Eq. (7). This H is computed on
the local scale σ̂ and should be propagated to the initial image resolution for
practical applications. The equivalent Hessian matrix H0 on initial resolution
can be obtained by multiplying H by a factor:

H0 =
1

(2oct)2H (24)

To reduce the computation complexity, the Hessian matrix is computed di-
rectly on the scale σ without degrading a lot the performance. This changes
a little the multiplicative factor: H0 = 1

(2oct+∆σ)2
H. This rescaling implies
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that features detected in coarse scales have larger uncertainty. Without this
back-propagation, SIFT features detected in different octaves have the similar
covariance since images have the same nature in blur. This is the main differ-
ence between the scale invariant feature detectors and non scale-invariant scale
detectors. For non scale-invariant detectors, like Harris corner, the detected
corners are almost homogeneous without scale change while SIFT features are
inhomogeneous due to the above multiplicative factor in back-propagation. An-
other difference is that Harris corners have isotropic covariance matrix while it
is not the case for SIFT features. The isotropy of SIFT features depends on the
threshold of edge response in SIFT, which is the ratio between two eigenvalues
of Hessian matrix. To eliminate the features along straight edges, this threshold
is set to be no bigger than 10, which keeps features on corners, contours and
junctions. These features do not all have isotropic covariance matrix (see Fig. 10
for different types of covariance matrix).

Another interesting question is whether the Hessian matrix is better esti-
mated in improved SIFT schema than in Lowe’s SIFT. In Lowe’s SIFT, the
Hessian matrix is multiplied by the factor 1

(2oct)2
. In improved SIFT, images

are zoomed by factor oct compared to their counterparts in Lowe’s SIFT. By
Eq. (2), if these images all contain Gaussian blur bigger than 1.6, the same
factor 1

(2oct)2
will be introduced in the Hessian matrix. In Fig. 11, the Hessian

matrix of local extrema is compared octave by octave for Lowe’s SIFT and im-
proved SIFT. Note that not all of the feature points in Lowe’s SIFT are found by
improved SIFT and improved SIFT also finds new features points. This means
a well-sampled image can be approriately interpolated to recover a high resolu-
tion image. Former local extrema are not necessarily still local extrema, while
new local extrema can appear. Yet, most of features are repeatedly detected
by two SIFT schema. Their covariance matrix seems to be very similar. This
means that no big improvement in localization uncertainty by canceling the sub-
sampling in SIFT scale space. Even if the Hessian matrix does not change a lot
in two SIFT schema, the small change is sufficient to estimate a better offset for
refinement in Eq. (7). In addition, more precise integer pixel position of local
extrema and gradient estimation also contribute to precise feature position.

Figure 10: Illustration of covariance matrix with different homogeneity or
isotropy. From left to right: homogeneous isotropic, nonhomogeneous isotropic,
homogeneous anisotropic and nonhomogeneous anisotropic.

5 Conclusion

SIFT and its improved version are evaluated by average localization error and
element-wise localization uncertainty. The first criteria suffers from blur incon-
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Figure 11: Covariance matrix is displayed by ellipse. Big ellipse means large
uncertainty. The first column: Lowe’s SIFT from octave 0 to octave 3. The
second column: improved SIFT from octave 0 to octave 3.
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sistency, descriptor inaccuracy and matching error, while the second criteria
requires only one image to evaluate the uncertainty introduced in detection
process. The uncertainty of feature points does not change a lot for both SIFT
schema if images contain enough Gaussian blur. On the other hand, enough
blur is also needed in improved SIFT to better compute gradient and Hessian
matrix, which contributes to decrease localization error. To really make the gain
in localization error useful, a more precise descriptor and matching procedure
should be considered to avoid the blur inconsistency.
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