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Préface

Résumé
Cette thèse apporte des solutions théoriques et pratiques à deux problèmes soulevés par la photographie numérique en
présence de mouvement, et par la photographie infrarouge. La photographie d’objets en mouvement semblait ne pouvoir
se faire qu’avec des temps d’exposition très courts, jusqu’à ce que deux travaux révolutionnaires proposent deux nouveaux
types de caméra permettant un temps d’exposition arbitraire. Le flutter shutter de Agrawal et al. [3] crée en effet un flou
inversible, grâce à un obturateur aux séquences d’ouverture-fermeture bien choisies. Le motion-invariant photography
de Levin et al. [69] obtient ce même effet avec une accélération constante de la caméra. Les deux méthodes suivent
ainsi un nouveau paradigme, la computational photography, selon lequel les caméras sont repensées, car elles incluent
un traitement numérique sophistiqué. Cette thèse propose une méthode pour évaluer la qualité image des nouvelles
caméras. Le fil conducteur de l’analyse est donc l’évaluation du SNR (signal to noise ratio) de l’image obtenue après
déconvolution. La théorie fournit des formules explicites pour le SNR, soulève deux paradoxes de ces caméras, et les
résout. Elle permet d’obtenir le modèle de mouvement sous-jacent à chaque flutter shutter, notamment tous ceux qui
sont brevetés. Une seconde partie plus brève aborde le problème de qualité principal en imagerie vidéo infrarouge, la
non-uniformité. Il s’agit d’un bruit évolutif et structuré en colonnes causé par le capteur. La conclusion des travaux est
qu’il est non seulement possible mais également efficace et robuste d’effectuer la correction sur une seule image. Cela
permet de contourner le problème récurrent des “ghost artifacts” résultant d’une incohérence du traitement par rapport
au modèle d’acquisition.

La théorie du flutter shutter
Une caméra numérique est un dispositif qui, en chaque pixel, compte les photons émis par le paysage (scène) observé
durant un intervalle de temps ∆t appelé temps d’exposition. A cause de la nature de l’émission de ces photons le nombre
de photons compté est une variable aléatoire de Poisson. La différence entre la valeur idéale et la valeur réellement
comptée par la caméra est appelée “shot noise” (bruit). Le rapport entre la moyenne de cette variable de Poisson et
son écart type est appelé SNR. Il mesure la fluctuation relative du nombre de photons mesuré par le capteur. A (très)
bas SNR le bruit est si fort que le paysage sous-jacent est à peine visible. Dans un système passif il n’est pas possible
de “booster” cette émission de photons (par un flash) et le seul moyen d’augmenter le SNR est d’augmenter le temps
d’exposition ∆t. Si, le paysage et la caméra sont en mouvement relatif durant le temps d’intégration des photons il en
résulte un flou de bougé (Fig. 1). Du point de vue mathématique un flou de bougé est une convolution du paysage
observé par une fonction porte dont le support à la longueur du flou, c’est-à-dire la distance en pixels parcourue par la
ligne de visée de la caméra durant le temps d’intégration. De fait une telle convolution n’est pas inversible en général



Résumé

Figure 1 – A gauche: une
image floue (et bruitée) acquise
par une caméra flutter shutter
numérique. Le flou a un support
de 52 pixels. A droite: l’image
déconvolée. Ces images ont
été produites par un simulateur
(publié [128]). Il simule l’image
acquise à partir de l’émission
(Poisson) de photons. Une telle
déconvolution n’est pas possible
sans utiliser une caméra flutter
shutter.

(dès que le support du flou dépasse deux pixels) puisque la transformée de Fourier du noyau est une fonction sinc. Dès
lors que, comme c’est le cas pour un satellite, la dérive de l’instrument est imposée et les moyens de calculs limités, le
seul moyen de garantir l’inversibilité est de contraindre le temps d’intégration de sorte que le flou ne dépasse jamais deux
pixels (c’est également le cas avec le dispositif time delay integration, TDI).
Récemment deux méthodes révolutionnaires d’acquisition ont été proposées. Elles permettent une exposition longue
avec un flou de bougé, rendu déconvolable. Ces solutions permettent d’augmenter indéfiniment le temps d’intégration, le
nombre de photons collectés, le SNR de l’image acquise. Toutes deux sont issues de la communauté de la “computational
photography”. La première méthode, le flutter shutter de Agrawal et al. [3] propose d’ouvrir et fermer le diaphragme
de la caméra (interrompant le flux de photons) selon un code bien choisi. La seconde, la motion-invariant photography
de Levin et al. [69] propose, paradoxalement, de bouger la caméra avec une accélération constante dans la direction
de la vitesse v0. Dans les deux cas la fonction de flou est changée et devient inversible, une seule image est transmise
et la déconvolution est numérique. La question se pose alors de savoir si, après déconvolution, le SNR reste lui aussi
arbitrairement grand. L’état de l’art ne répondait pas à cette question.
Nous donnons une formalisation mathématique [133] prouvant que ces méthodes fonctionnent effectivement et avons
calculé le SNR de l’image déconvolée pour n’importe quelle configuration de caméra (standard, la motion-invariant
photography et un flutter shutter quelconque). A vitesse v0 fixée, cette étude [135] permet de calculer le temps d’exposition
optimal pour une caméra standard. Ce meilleur cliché permet, par exemple, de calculer la longueur optimale (en nombre
d’étages) d’un TDI, le critère étant le meilleur SNR pour l’image restaurée et non pour l’image acquise. Dans la
littérature, l’optimisation d’un flutter shutter n’est faite que par des recherches aléatoires qui conduisent à des résultats
moins bons qu’une caméra standard du fait du grand nombre de codes possibles. Il y a 252 codes à tester dans le cas
de Agrawal et al. mais un cas pratique conduit à un nombre bien plus grand encore. La conclusion de ce chapitre
est qu’à la fois les codes publiés et brevetés [80, 98, 99] et la motion-invariant photography [70] sont, contrairement
aux revendications des auteurs, en réalité moins bons en termes de SNR qu’une caméra standard bien utilisée lorsque
la vitesse de l’objet photographié est connue. Ce fait peut être vérifié expérimentalement grâce à notre article [128]
présentant une démonstration en ligne.
Nous avons donné deux généralisations (analogique et numérique) du flutter shutter dont la faisabilité technique a été
étayée en nous appuyant sur des brevets dans chacun des cas. Il apparaît que le flutter shutter numérique est toujours
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meilleur que l’analogique, permet plus de degrés de liberté et est plus facile à optimiser (dans la suite les résultats
quantitatifs mentionnés ne concernent que le flutter shutter numérique). La conclusion de ce chapitre est que, quel que
soit le flutter shutter, et contrairement à ce que laisse entendre la littérature, même à temps d’exposition infini le SNR
reste fini. Cela signifie qu’augmenter le temps d’intégration peut, paradoxalement, conduire à une réduction du SNR de
l’image restaurée, comme c’est le cas pour une caméra standard. Nous avons néanmoins montré qu’à temps d’intégration
constant la caméra flutter shutter est toujours meilleure que la caméra standard (de 4% à v0 fixé). Ce gain correspond
non pas à un plus grand nombre de photons collectés mais à un gain provenant du noyau de déconvolution. Ceci constitue
un premier paradoxe du flutter shutter. Nous avons optimisé, analytiquement, le flutter shutter pour obtenir le SNR
maximum. Le gain est de 17% sur le SNR par rapport au cliché standard en supposant un temps d’intégration infini, ce
qui est peu. C’est le second paradoxe. Le code optimal est auto-déconvolant et permet de déconvoler toutes les vitesses
|v| ≤ |v0|. Cette optimisation correspond, dans une situation réelle, à une optimisation du pire cas.
Par la suite, nous sommes parvenus à contourner le deuxième paradoxe et à augmenter le rendement du flutter shutter
au-delà de 17%, avec une solution stochastique au problème. En supposant que la vitesse v est inconnue mais que
l’on connaît sa densité de probabilité (qui peut s’apprendre des images acquises au cours d’une phase de calibration de
l’instrument) on peut calculer le flutter shutter optimal. Ce cadre de travail permet, par exemple, de traiter le cas où
plusieurs objets bougent à des vitesses différentes, leurs surfaces relatives fournissant la densité de probabilité. Il permet
d’optimiser non pas le pire des cas mais le cas moyen à risque minimal. Il permet de calculer [134] analytiquement la
fonction d’obturation optimale et d’en déduire une approximation constante par morceaux utilisable par une caméra.
Nous sommes donc en mesure de fournir [129], pour n’importe quelle densité de probabilité sur v, le meilleur code à
appliquer (le meilleur design de caméra) pour un flutter shutter et aussi pour une caméra standard. Dans ce cas nous
donnons le temps d’obturation optimal. Nous prédisons le gain en SNR du code d’obturation du flutter shutter optimisé.
Toutefois, pour des modèles de vitesse plausibles le gain par rapport à une caméra standard utilisée à son maximum
est modeste (25%, en moyenne pour une distribution Gaussienne et en multipliant le temps d’intégration par un facteur
10 par rapport au meilleur cliché). Le seul cas où le gain est intéressant est le cas d’une distribution de la forme
ρ(v) = (1 − ε)δ0(v) + εδv0 (v). Le flutter shutter se rapproche alors du multi image avec recalage, pour un SNR moyen
calculé sur toute l’image et en supposant v0 grand et ε petit. Nous donnons également un moyen de calculer la densité
de probabilité en fonction du “code” d’obturation du flutter shutter. Cela permet de procéder au “reverse engineering”
de toutes les caméras flutter shutter “optimisée” et brevetées (Agrawal et al., McCloskey et al., etc.). Nous en déduisons
que chaque code est optimal pour une certaine distribution de vitesse.
Une conclusion paradoxale serait ceci: face à une scène fixe avec des objets en mouvement rapide, le gain devient
substantiel. Le flutter shutter garantit un SNR arbitrairement grand et il permet néanmoins d’obtenir une image nette
des objets en mouvement. Toutefois, face à une scène en mouvement à vitesse connue l’apport du flutter shutter est
modeste.

Restauration des images infrarouges

Dans une caméra infrarouge thermique non refroidie la fonction de transfert de chaque pixel (photo-site) est inconnue,
différente et évolue dans le temps. Cela signifie que pour n photons comptés par le pixel on ne sait pas combien ont été
réellement reçus à un instant donné. La différence entre les fonctions de transfert des pixels provoque la non-uniformité
(Fig. 2). De plus pour des raisons technologiques (lecture du capteur) la non-uniformité n’est pas décorrélée et possède
une structure en ligne ou en colonne. En effet, la réponse propre de chaque compteur d’électrons est différente, elle aussi.
Il faut donc trouver, pour chaque pixel, une fonction qui n’est pas linéaire, et évolue dans le temps.
Le but de l’étude est de faire se rejoindre sur le plan de la qualité image les (coûteuses, lourdes et gloutonnes en

énergie) caméras refroidies (pour lesquelles le facteur temps disparaît) et les caméras non refroidies. Une correction
est si nécessaire que dans certaines caméras un diaphragme se ferme, interrompant donc l’acquisition, périodiquement
(toutes les 10-30s) afin de procéder à une nouvelle calibration (“one point NUC”, “ two points NUC”). Les solutions
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Figure 2 – Sur la gauche,
une image raw prise par une
caméra infrarouge (bande
LWIR). La non-uniformité
dans la réponse des capteurs
provoque les stries. Sur la
droite, la solution proposée
(qui n’utilise que l’image de
gauche) (publiée [130]).

algorithmiques actuelles ne sont pas satisfaisantes en termes d’amélioration de la qualité image. Pire encore, elles
introduisent de nouveaux artéfacts: les “ghost artifacts”. En effet, depuis 10 ans l’état de l’art sur le sujet s’est focalisé
sur une réponse multi images à ce problème. Les solutions de l’état de l’art sont soit stochastique soit correspondent,
in fine, à la création d’un panorama. Les solutions stochastiques sont toutes basées sur l’hypothèse que [H :] les
histogrammes temporels des pixels sont égaux sur un intervalle de temps fixé. Ceci n’est bien sûr pas vrai en général
(sauf si nous pouvions déplacer tous les pixels entre eux pour toutes les permutations possibles et si les fonctions des
pixels étaient constantes dans le temps). Elles imposent à l’utilisateur des conditions particulières de mouvement de la
caméra. L’utilisateur est forcé de ne cesser de balayer la scène pour assurer l’hypothèse [H], ce qui requiert un grand
nombre d’images. Elles estiment toutes la fonction du pixel en la supposant constante sur un intervalle de temps, ce qui
est incompatible avec la recherche d’une fonction “à tout instant”. De plus l’estimation est une approximation linéaire
de la fonction du pixel. De fait, lorsque l’hypothèse [H] est affaiblie (par exemple lorsque le paysage change : un véhicule
arrive, etc.) les résidus de l’approximation linéaire constante par morceaux dans le temps se surimposent sur les nouvelles
images (“en creux” voir, par exemple [42, 106]). Ces résidus perdurent du fait du grand nombre d’images utilisé et leur
correction est difficile car on ne peut décider aisément si un changement dans l’observation provient d’une dérive de
la non-uniformité ou d’un changement dans la scène. Les panoramas, eux, permettent de corriger la non linéarité du
capteur. Toutefois, dans les images le “bruit de non-uniformité” (Fig. 2) domine. Dans ces conditions seul un recalage
global (homographique) est envisageable. Ces algorithmes ne peuvent s’appliquer que s’il n’y a pas d’effet de perspective
(scène vue de très loin) et n’apportent pas de solution satisfaisante. Pour toutes ces raisons les algorithmes de l’état de
l’art ne sont pas du tout adaptés, ne produisent pas une qualité suffisante, et introduisent de nouveaux problèmes qu’il
faut ensuite corriger [106].
Nous proposons une solution mono-image basée sur des changements de contrastes locaux. L’algorithme est basé sur
[30] et permet de compenser une non-uniformité non linéaire, sans modèle, et automatiquement (zéro paramètre). Etant
mono-image, elle garantit l’absence de “ghost artifact”. Nous l’avons encore améliorée en la rendant localement adaptative
[130], cette partie est toujours automatique. Nous avons également défini une mesure de la qualité image, basée sur la
RMSE (root mean square error) permettant de s’affranchir des changements de contraste et reflétant mieux la qualité
perceptuelle afin de pouvoir donner une base de comparaison fiable de tous ces algorithmes. Elle peut s’appliquer (et
devrait dès lors que la chaîne peut introduire un léger changement de contraste) quel que soit le type d’algorithme
afin de fournir une mesure quantitative plus pertinente. Nous pensons parvenir dans les prochains mois à une chaîne
automatisée de correction de non-uniformité/débruitage (il faut estimer le bruit dans l’image) mono image et films tout
en garantissant l’absence de “ghost artifacts” (robustesse).

Mots clés : flutter shutter, motion-invariant photography, cliché, flou de bougé, SNR, bruit de Poisson, opti-

misation, infrarouge, bruit spatial fixe, matrice de plan focal, correction de non-uniformité (NUC), débruitage.



Foreword

Abstract
This thesis provides theoretical and practical solutions to two problems raised by digital photography of moving scenes,
and infrared photography. Until recently photographing moving objects could only be done using short exposure times.
Yet, two recent groundbreaking works have proposed two new camera designs allowing arbitrary exposure times. The
flutter shutter of Agrawal et al. [3] creates an invertible motion blur by using a clever shutter technique to interrupt the
photon flux during the exposure time according to a well chosen binary sequence. The motion-invariant photography of
Levin et al. [69] gets the same result by accelerating the camera at a constant rate. Both methods follow computational
photography as a new paradigm. The conception of cameras is rethought, to include a sophisticated digital processing.
This thesis proposes a method for evaluating the image quality of these new cameras. The leitmotiv of the analysis is
the SNR (signal to noise ratio) of the image after deconvolution. It gives the efficiency of these new cameras design
in terms of image quality. The theory provides explicit formulas for the SNR, raises two paradoxes of these cameras,
and resolves them. It provides the underlying motion model of each flutter shutter, including patented ones. A shorter
second part addresses the the main quality problem in infrared video imaging, the non-uniformity. This perturbation is
a time-dependent noise caused by the infrared sensor, structured in columns. The conclusion of this work is that it is
not only possible but also efficient and robust to perform the correction on a single image. This permits to ensure the
absence of “ghost artifacts”, a classic of the literature on the subject, coming from inadequate processing relative to the
acquisition model.

The flutter shutter theory
A camera is a device counting at each pixel sensor, the number of photons emitted by the observed scene during an
interval of time ∆t called exposure time. (We neglect the randomness in the electron generation when photons arrive in
the semiconductor.) Due to the nature of photon emission the number of photons counted is a Poisson random variable.
Its mean would be the ideal pixel value. The difference between this ideal value and the actual value counted by the
sensor is called (shot) noise. The ratio of its mean over its standard-deviation is called signal to noise ratio (SNR). It
measures the relative fluctuation of the number of photons caught by the sensor. At (very) low SNR the noise is so strong
compared to the underlying signal that it is almost impossible to distinguish the scene being observed from the noise.
Therefore, from the beginning photography has been striving to achieve the highest possible SNR. In passive imaging
systems there is no control over the scene itself. Thus no lighting is possible, to boost the photon emission. Hence,
the only way to increase the SNR is to integrate more photons by increasing the exposure time ∆t. If a scene being
photographed moves during the exposition process, or if the scene is still and the camera moves, the resulting images
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Figure 3 – Left: simulated
noisy and blurry image acquired
by a flutter shutter camera with
a 52 pixels blur support. Right:
restored image. Those images
were generated from a flutter
shutter camera simulator [128].
It simulates a flutter shutter
camera assuming a Poisson pho-
ton emission. Such a deconvo-
lution is not possible without a
flutter shutter.

are degraded by motion blur. The difficulty of motion blur is illustrated by its simplest example, the one dimensional
uniform motion blur (the relative velocity v0 between the camera and the landscape is constant). The result of a too
long exposure during the motion on the image is nothing but a convolution of the image with a one dimensional window
shaped kernel. The support of the kernel increases linearly with the exposure time ∆t and the velocity v0 of the motion.
If the exposure time is too long and the blur support exceeds two pixels, the blur is no more invertible and makes the
restoration process to an ill posed problem.
As soon as, like for satellites, the motion is imposed (by its rotation around the Earth) and the computational capabilities
very limited the only mean to ensure the invertibility is to constraint the exposure time ∆t such that the blur support
never exceeds two pixels (notice that it is also the case with the time delay integration device, TDI). Recently, two
revolutionary techniques have been proposed to create invertible motion blurs of arbitrary length. These techniques
permit to increase the exposure time ∆t, the number of photons sensed and the SNR on the observed image arbitrarily
while guaranteeing an invertible kernel. The Agrawal et al. flutter shutter apparatus [3, 69] suggests modifications in
the acquisition process to get invertible blur kernels by using a clever shutter method. The authors propose to interrupt
the flux of photons by opening and closing the shutter of the camera during the exposure time ∆t (Fig. 3) according to
a well chosen binary sequence. Paradoxically the Levin et al. motion-invariant photography suggests to accelerate the
camera at a constant rate in the direction of v0. In both cases the kernel is no more a window shaped function and is
made invertible. For both apparatus only one image has to be transmitted. At first sight the flutter shutter looks like
a magic solution that should equip all cameras. The question is to know whether or not the SNR after deconvolution
remains arbitrarily high. This question was unanswered by the state of the art.
To study the flutter shutter, the first steps of the image formation is reformulated using a physical Poisson model for
the photons capture process, including the obscurity noise. This model is necessary for the flutter shutter where all
noise terms inherent to image sensing must be taken into account without any approximation. This study led us to
formulate new questions, which can be termed “best snapshot theory”. It is proven that for a known velocity v0 the best
snapshot has an exposure time ∆t such that |v0|∆t ≈ 1.0909 (this best snapshot can be used to compute the optimal
number of stages in a TDI device). It is verified mathematically and numerically that the flutter shutter actually works.
The SNR of the deconvolved image is computed, for any flutter shutter function. It includes the standard camera, the
motion-invariant photography and any flutter shutter. The study generalizes and analyzes the flutter shutter in digital
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and analog implementations. The difference is that the numerical flutter shutter allows for negative gains, while the
analog only allows for positive non piecewise constant gains. It is proven that the numerical flutter shutter beats the
analog flutter shutter for the image quality (SNR) and is always more flexible to use. The technical aspects of feasibility
for both proposed generalizations are supported by existing patents of imaging devices. The design of the sequence –a
piecewise constant kernel– is crucial and classic literature [3] looks for a sequence that maximizes the modulus of the
discrete Fourier transform by random search among the sequences of fixed integral. This is inaccurate as it neglects the
blur induced by the constant part of the kernel. The “optimized” sequences are worse than the best snapshot and yield
a lower SNR, due to the huge number of possible binary codes : 252 in the case of Agrawal et al. but a practical case
can lead to a much bigger number. This fact can be checked online using [128]. It is proven that even using the same
time aperture the flutter shutter does always beat the standard camera, by 4%. This slight improvement comes from
the deconvolution. It is proven, analytically, that for a fixed velocity v0 the best flutter shutter comes from the Fourier
series coefficient of a (zoomed) sinc function and that the SNR remains finite, no matter how long the exposure time.
This optimal code is self-deconvolving, and is able to deconvolve any velocity |v| ≤ |v0|. It is proven that it increases the
SNR by +17% compared to the best snapshot, even though the exposure time is infinite. This optimization is a worst
case optimization.
Nevertheless, a better mouse trap was found, it increases the efficiency of the flutter shutter beyond the 17% bound by
using a stochastic solution. It is proven that, on average, the SNR can increase significantly provided the probability
density of the velocity v is a priori known (it is possible to estimate this probability density during a calibration phase).
This framework is well suited to the case of multiple objects and/or velocities. Their relative surface provides the
probability density. This corresponds to the optimization of the average case at minimal risk. Our solution permits to
compute analytically the best flutter shutter function and to deduce the best code to use in the camera. Thus, given
any probability density on v this thesis computes the best aperture strategy for a flutter shutter, a standard camera and
compare their SNR. The gain, using a numerical flutter shutter is of 25% assuming a Gaussian distribution on v for
an exposure time increased by a factor 10. In the case of a distribution of the form ρ(v) = (1 − ε)δ0(v) + εδv0 (v), the
flutter shutter competes with a multi-image fusion scheme. It is proven that given any flutter shutter code it is possible
to deduce its underlying probability density on v. This permits to proceed to a reverse engineering of all optimized and
patented cameras (Agrawal et al., McCloskey et al., etc.). This thesis deduces that each flutter shutter code is optimal
for some probability density on the observed velocities.
The conclusion is that the flutter shutter is useful, and even SNR-efficient if the observed objects are moving at high and
unknown velocities. In this case the flutter shutter guarantees an arbitrarily high SNR and a sharp image. Nevertheless,
if the velocity of the observed scene is known the gain in SNR is modest compared to a standard camera.

Restoration of infrared images

The standard readout technique of CCD devices works for each line (or row) independently and consists of transporting
charges from pixels to a counter. Each pixel has its own transfer function response. Furthermore for each line the counter
transfer function is different and in most cases the non uniformity (NU) presents some structured noise resulting in a row
or line pattern in the sensed images. This noise is called non uniformity and comes from the differences between pixel
transfer functions. For uncooled infrared cameras the difficulty is even increased as the detector response evolves quickly
with time. This means that for an equal amount of photons counted by the camera the (true) number of photons sensed
is unknown and drifts with time. Thus, we need to estimate for each pixel a non linear function[11], that evolves with
time. The goal is to obtain the image quality of heavy, expensive and energy consuming cooled infrared cameras using
a cheap uncooled camera. The non uniformity is a serious practical limitation to both civilian and military applications
as it degrades the image quality severely (see Fig 4). A correction is so much needed, that in many uncooled infrared
cameras a flap closes every 10-30 seconds to perform a partial calibration (“one point NUC”, “two points NUC”). This
interrupts the image flows, which can be calamitous. Therefore a good non uniformity algorithmic correction is a key
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Figure 4 – On the left
the RAW (input) image taken
by an LWIR infrared camera.
The non uniformity caused the
vertical stripes. On the right
the proposed solution, using
only the image on the left.

factor in ensuring the best image quality and the robustness of the downstream applications.
The classic literature on the subject contains two kinds of algorithms, both working on movies. None of them give
satisfactory results in terms of image quality. Even worse, some of them actually create new artifacts. The non uniformity
correction methods are either stochastic, or equivalent to the creation of a panorama. The stochastic solutions [43, 46,
113, 115, 138, 139] are based on the hypothesis [H :] all temporal pixel histograms should be equal on some time span.
To ensure [H :] they require particular conditions of observation and/or camera motion. The user is forced to sweep, non
stop, many parts of the scene which requires the use of a large number of images. In order to perform the estimation (of
the transfer functions) they assume piecewise constant functions through time. This contradicts the model essentially
because of the large number of images needed. The estimation is a linear approximation. When the hypothesis [H :] is
no more valid (a vehicle arrives, etc.) residues of the correction as well as the previous landscape remains superimposed
in the subsequent frames. Those are the “ghost artifacts”. The usual method to avoid these artifacts is to restart the
learning process. Nevertheless, the detection of scene changes is treacherous in presence of non uniformity because it is
not possible to decide if a change in the observation comes from the non uniformity side –by the time drift– or from the
scene itself.

The second kind of method uses a warping of the images and roughly creates a panorama [41, 160]. Since the noise
dominates, only homographies are possible. This means that the scene must be seen at a very large distance.

In order to avoid the “ghost artifacts” and the image warping this thesis proposes to achieve the non uniformity
correction in the image itself. The algorithm is based on [30] and applies local contrast changes. It is parameterless and
can be tested online [132]. Also it can correct for non linearities of the non uniformity without any model of the non
uniformity. The resulting images are quite neat (see Fig 4). This thesis proposes an image quality measure, based on
the RMSE (root-mean-square error) which permits to get rid of contrast changes and is best suited to the perceptual
quality. This measure provides a reliable quantitative criterion the compare all those algorithms without any bias.

Keywords : Flutter shutter, motion-invariant photography, snapshot, motion blur, SNR, Poisson noise, opti-

mization, infrared, fixed pattern noise, focal plane array, non uniformity correction (NUC), denoising.
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Part I

The Theory and Practice of Invertible
Motion Blurs
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Chapter I

Introduction

Classic digital cameras are devices counting at each pixel sensor the number of photons emitted by
the observed scene during an interval of time ∆t called exposure time. Due to the nature of photon
emission the counted number of photons is a Poisson random variable. Its mean would be the ideal
pixel value. The difference between this ideal mean value and the actual value counted by the sensor
is called (shot) noise. The ratio of the mean of the photon count over its standard-deviation is called
Signal to Noise Ratio (SNR). At (very) low SNR the noise is so strong compared to the underlying
signal that it is almost impossible to distinguish the scene being observed from the noise. Therefore,
photography has been striving to achieve the highest possible SNR. In passive imaging systems,
where there is no control over the scene lighting, the only way to increase the SNR is to integrate
more photons by increasing the exposure time ∆t.

If the scene being photographed moves during the exposition process, or if the scene is steady and
the camera moves, the resulting images are degraded by motion blur. Obtaining longer exposure time
without blur can be therefore seen as one of the core problems of photography. The first photographs
taken by Nicephore Niepce required several hours, a time incompatible with live subjects or even with
outdoors static scenes exposed to the sun. Ever since, photography has been subject to the problem
of finding the right compromise between a short exposure time, which avoids the effects of motion
blur, and a longer exposure time, which permits many more photons to reach the sensor and therefore
increases the SNR.

Motion deblurring is the combination of two dependent problems a) the kind of kernel applied to
the images which depends here on the motion b) the actual deblurring method, where the kernel may
have to be estimated a posteriori, or not. Motion blur arises from multiples causes and is very common
even for consumer level photography where it is partly compensated by optical, mechanical, or digital
stabilizers. Lens based optical stabilizers use a floating sensor moving orthogonally to the optical
axis. Vibrations are detected using accelerometer sensors estimating the camera motion in the x and
y axis of the focal plane. Hence it cannot compensate for camera rotations. These techniques cannot
compensate for motion blur of arbitrary length (support), since they are limited by mechanical and
technical issues. In most cases the size of the blur support will increase proportionally to the exposure
time. Thus they require a “small” exposure time despite the stabilization device. The difficulty of
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motion blur is illustrated by its simplest example, the one dimensional uniform motion blur. The
result of a too long exposure during the motion on the image is nothing but a convolution of the
image with a one-dimensional window shaped kernel. The support of the kernel increases linearly
with the exposure time and the velocity of the motion. As soon as the exposure time is too long, this
blur is no more invertible, and the restoration problem is ill posed.

A revolutionary alternative to classic photography was proposed in [3, 4, 6, 98, 99] where the
authors suggest modifications in the acquisition process to get invertible motion blur kernels by using
a flutter shutter. These authors propose to use a binary shutter sequence interrupting the flux of
incoming photons on well chosen time sub-intervals of the exposure time interval. If the shutter
sequence is well chosen, invertibility is guaranteed for blurs with arbitrary size support. Hence,
replacing the classic camera shutter by a flutter shutter, it becomes possible to use any integration
time. This also means that the exposure time on a given scene can be much longer: many more
photons are therefore sensed by the camera. Thus, the flutter shutter looks like a magic solution that
should equip all cameras. Yet, does that mean that one can increase indefinitely the SNR by an
increased exposure, at no cost from the motion blur side?

This thesis starts by modeling realistically the stochastic photon capture by a light sensor, taking
into account both the classic shot noise and the obscurity noise. To cope with the fact that the image
noise may be colored after deconvolution, the “spectral” SNR function defined in [12] by Boracchi et
al is used and extended to a “spectral SNR on average” to reflect the final RMSE.

The modeling will treat in the same formalism all possible types of flutter shutter, including an
analog model, a digital model, the classic Agrawal et al. flutter shutter, and the Levin et al. motion-
invariant photography as well. For all, a closed formula will be given for the spectral SNR, permitting
to compare them theoretically.

Among the kinds of possible set ups, the most flexible, adaptive to all kinds of motions, is the
numerical flutter shutter, which allows for negative gains. It is proven that it also can realize the
best SNR. One of the striking results of this mathematical analysis is the proof that, when the
object velocity is a priori known, the best numerical flutter shutter code is given by the Fourier series
coefficients of a (zoomed) sinc function (see Figs. A.1 and A.2). The proposed formalism also permits
to compute by a closed formula the optimal aperture time for a classic snapshot, when the velocity of
the photographed object is known (see Fig A.3). This snapshot theory allows us to match on an equal
footing the new flutter shutter apparatus against a plain old camera. This comparison leads to what
we call the two flutter shutter paradoxes. The first surprising result is that the flutter shutter always
beats slightly a standard camera, even when using exactly the same exposure time. On the other
hand, an infinite exposure time, accumulating many more photons than a classic snapshot, does not
grant an infinite SNR. This rather disappointing fact that makes motion photography significantly
different from the classic steady photography where, by increasing the aperture time, any SNR can
be achieved.

Fortunately, a better mouse trap permits to override the first flutter shutter paradox by assuming
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I.1 Related work

Figure A.1 – The flutter shutter gain function for the sinc-code (left). The Fourier transform (modulus) of the
sinc− code (right), approximating the Fourier transform of the ideal gain function.

that the observed objects adopt a known (or learned) random velocity distribution. Analytical formulas
are proposed that link an optimal flutter shutter code (see Fig. A.4) with the probability density of
the expected motion blurs. Furthermore, in presence of random motions, an adequate flutter shutter
is proved to significantly increase the expected SNR (beyond the bound of the first flutter shutter
paradox), with respect to an optimal snapshot. Not only this theory permits to formalize the design
of optimized codes given random velocity model. Conversely, it also allows us to analyze a posteriori
any existing flutter shutter strategy, and to perform a reverse engineering of existing patented codes.

1 Related work

Blind deconvolution techniques [17, 18, 39, 61, 66, 71, 119] aim at estimating the blur and recovering the
sharp image directly from the blurred one. Deconvolution algorithms have been developed intensively,
[24, 48, 54, 95, 108, 123, 151]. For example in [154, 157] the authors suggest a modification of the
Richardson-Lucy method [74, 104] to control the artifacts of the restored image. Other priors have
been investigated in [59, 77, 159]. In [67] Fergus et al. use natural image statistics to estimate the blur.
In [7, 8, 22, 27, 28, 32, 50, 51, 53, 56, 57, 60, 103, 116–118, 121, 122, 145, 149] good results are shown
for the blur estimation and/or deblurring problem. Using the compressive sensing framework, the
question of the order of the pair image estimation/motion estimation for deconvolution is addressed in
[52]. Nevertheless, the power spectrum of images acquired with a blur of more than two pixels contains
several zero crossings. Thus, useful information for image quality is irreversibly lost. Hence, no matter
how sophisticated the image reconstruction is, it is virtually impossible to recover a de-blurred image
without strong hypotheses on the underlying landscape. Such strong hypotheses are unrealistic for
most images. The results are therefore in practice poor [111]. In an attempt to transform the blur
problem into a well posed problem the authors of [19, 21, 23, 100] proposed to use two photographs
with different blurs instead of one. In [136, 156] the authors use a long exposure image and another
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Figure A.2 – Sinc code : observed image (left). The blur interval length is equal to 52 pixels here. Reconstructed
image (RMSE = 1.33) (middle). Residual noise (difference between ground truth and reconstructed, dynamic
normalized on [0, 255] by an affine contrast change). The acquired image is “sharp”, it is no surprise since the
sinc-code has a nearly constant Fourier transform thus, it does not alter any frequency.

one, sharp but noisy, to deblur the first. In [6] the authors suggest to take several images with several
exposure times so that the blur in each image is different. If the zeroes of each Fourier transform do not
coincide then it is possible to deblur by picking non zero coefficients in each image. In [124] a similar
hybrid scheme is used where an image at high resolution and long exposure is taken simultaneously
with a burst of low resolution and short exposure. In [10] a Mumford-Shah like variational model is
proposed to simultaneously estimate the blur and deblur in presence of multiple objects motion from
videos.

In [110] the authors address the question of an automatic tuning of the exposure time to avoid
overexposure in the case of still imaging. In [12] the authors treat the question of the optimal exposure
time depending on the SNR of the restored image using a conventional camera. They consider the
case of non invertible blurs with supports larger than two pixels, using a regularized deconvolution
[33]. In [127] the authors use a full multi-image framework acquiring a bunch of sharp but noisy
images and recovering a sharp image with increased SNR. For a review on multi image denoising the
reader can refer to [15]. Conversely in [47] the authors reconstruct a movie from a single image using
a temporally and spatially varying mask placed on the aperture. The mask helps encode the spatio-
temporal information. In [35, 92, 125, 144, 150, 152] the authors use hybrid or complex camera systems.
Unfortunately this kind of scheme may lead to other problems such as an expensive computational
cost or hardware issues.

The simplest hardware set up seems to be proposed in [3, 4, 6] by Agrawal et al. The new
acquisition process modulates the photon flux into the camera by opening and closing the camera
shutter according to certain well chosen pseudo random binary codes. In the case of a uniform motion
in front of the camera, the resulting blur kernel becomes invertible (there are no zeroes in its Fourier
transform), however big the velocity is. The visual result of an image acquired by flutter shutter is
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Figure A.3 – This figure shows the RMSE curves for different snapshots kinds, on five test images (House,
Alley, Boat, Cameraman, Peppers). On the x − axis, the blur support (|v|∆t) in pixels, on the y − axis the
corresponding RMSE. The curves confirm that, on average, the blur support for a standard camera should be of
approximatively ∆t∗ = 1.0909 pixel. A larger support would lead to a better SNR on the observed image samples,
but the deconvolution would entail a lower SNR on the deconvolved image. The best snapshot is a compromise
between the number of photons caught during a time span ∆t and the deconvolution kernel. It gives a reference to
compare all flutter shutter strategies in terms of SNR.

close to a stroboscopic image, which can nonetheless give back a neat image by deconvolution. A
compressive sensing flutter shutter camera was designed in [120] using random sequences where a
blurry and low resolution image is acquired and processed to a neat and at high resolution image.
Roughly speaking, the flutter shutter ensures that no information is lost by the motion blur; the
compressed sensing technique deals with the increase of resolution. The compressed sensing technique
is also used in [101] for spatio-temporal up-sampling. Alternatively the case of periodic events was
investigated in [102]. In [63, 82, 90, 141] the authors use an active dynamic lighting pattern in place of
the shutter to recreate a flutter shutter effect. The theory presented herewith works for this set up. In
[79] the flutter shutter apparatus is applied to iris images and in [153] to bar-codes. In [78] the authors
propose to optimize the binary flutter shutter code in function of the velocity of the scene. In [126] the
authors use a local deblurring user-driven scheme on a flutter shutter embedded camera to deal with
spatially varying blurs caused by the presence of several velocities in the observed scene. In [109] the
authors treat the question of denoising an image taken by a flutter shutter camera, and also suggest
an user assisted estimation of the blur. Their conclusion is that the denoising should be applied both
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Figure A.4 – Codes obtained assuming a truncated Gaussian density for the velocities. On the left from top
to bottom: the code for a truncated Gaussian velocity distribution measured (x− axis k, y − axis gain αk) using
an increase exposure time factor of 5 and 10. This means that the first code has an exposure time five times
greater than the best snapshot on average, the second 10 times. On the right the corresponding Fourier transform
(modulus) of the code (see III.18) and the ideal Fourier transform 4

√
w(ξ) (VII.2) in bold. Those results permits to

visualize the effect of the optimization. The conclusion is that nearly no more improvement can be expected from
the convergence of the computed αk coefficients of the code to the ideal 4

√
w(ξ) function. This is a consequence of

Thm. 2.1 (chapter III).

before and after deconvolution. In [31] the authors treat the question of a posteriori motion estimation
using a flutter shutter. In [40] a per pixel flutter shutter is used to build a camera that permits a
post-capture balance between spatial and temporal resolutions of movies. A multi-camera equipped
with flutter shutters is investigated in [2] and used to increase the frame rate of a single camera while
having an increased amount of light captured compared to the equivalent hight-speed camera. A single
camera equipped with a mask on the aperture and an array of light sources is used in [65] to construct
the visual hull of an object (shape from silhouette). Another solution to get an invertible motion
blur using only one image was found in [69] where Levin et al. suggested to move the camera in the
direction of the motion during the exposure time. The authors use a constant acceleration motion in
order to make the resulting kernel invertible and spatially invariant to the velocity. Hence an a priori
knowledge of the motion direction is required. This approach has been generalized in [25] to the case
of unknown directions, but it uses two images instead of one. In [81] the motion-invariant photography
apparatus is implemented using the lens of the camera. In any cases, these approaches cause blur in
static parts of the scene. Yet, thanks to the invertibility (well-posedness of the recovery problem),
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I.2 Overview

in both cases, the sharp image can be recovered by a deconvolution. Notice that only one image is
acquired and recovered at the end of the process. Alternatively in [9, 36, 68, 72, 76, 84, 88, 143]
authors use a temporally fixed and spatially varying mask in order to estimate the depth, and/or
refocus the out of focus part to get an always in focus (neat) image. In [45] the authors deal with the
question of the optimal tradeoff between depth of field and exposure time. In [38] the authors take
advantage of CMOS imaging sensors to implement a coded rolling shutter to trade vertical resolution
for an increased dynamic range. The authors of [140] also suggest to use a camera equipped with a
mask on the aperture camera and to take purposely out of focus images with a mask to increase the
dynamic range. Their conclusion is rather negative “None of the possible combinations of aperture
filter and deconvolution algorithm were able to consistently reduce the dynamic range of the captured
image without excessively degrading image quality”. Another computational camera is designed in [86]
where the aperture is equipped with a mask and the sensor is moved at a constant velocity during the
exposure. It is used to control the depth of field, create bokeh or a depth invariant blur size. Another
camera prototype was designed in [73], where the authors suggest a programmable aperture (mask). It
is also used for depth and digital refocusing. An interesting implementation, the Frankencamera, was
proposed in [1]. It permits to “control and synchronization of the sensor and image processing pipeline
at the microsecond time scale, as well as the ability to incorporate and synchronize external hardware
like lenses and flashes”. The authors demonstrate six computational photography applications. An
even more complex scheme involving a fixed mask close to the sensor and dynamic one on the aperture
is investigated in [5], where the authors explore the feasibility of post processing trade offs between
spatial, angular and temporal resolutions. Finally reviews of computational photography can be found
in [75, 96, 97, 161].

2 Overview

This thesis focuses on the various set ups permitting to acquire an image degraded by an invert-
ible motion blur, namely the Agrawal et al. flutter shutter and the Levin et al. motion-invariant
photography.

Chapter II section 1 proposes a general mathematical framework for image acquisition using a
physical Poisson model for the photons capture process, including the obscurity noise. This model
suits well our context since all noise terms inherent to image sensing are taken into account without any
approximation. The model is detailed in a static context in section 2. Fourier-based SNR definitions
are given in section 4, to take into account the deconvolution later on. The model is applied to the
still photography in section 5. The non stationarity motion induced case is introduced in section 6
and the multi-images fusion is discussed in section 7.

In chapter III the mathematical model of chapter II is used to analyze the numerical flutter shutter,
a digital implementation of the classic flutter shutter method. This set up is the most flexible, adaptive
to all motion and allows for negative gains. The numerical flutter shutter does not reduce the number
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of photons caught by the sensor and it is proven later on that it yields the best possible SNR. It is
proven that it actually works and, for any flutter shutter gain function a formula providing the SNR
of the neat deconvolved image is given. The numerical flutter shutter gain function is in principle
piecewise constant nevertheless, it is useful for the theory to extend it to continuous gain functions.
In section 2 a reverse formula permits to get back an equivalent piecewise constant numerical flutter
shutter.

Chapter IV investigates classic analog implementation of the flutter shutter. This analog flutter
shutter is a generalization of the original Agrawal et al. flutter shutter which allows for smoother,
non binary, gain functions. For any analog flutter shutter apparatus, an explicit formula to measure
directly the SNR of the deconvolved sharp image is given. Section 2 proves that the numerical flutter
shutter SNR is always larger than the analog flutter shutter SNR with the same gain function.

A snapshot theory is developed in chapter V section 1. The standard camera apparatus is explored
as a particular flutter shutter strategy. The SNR of the deconvolved image is calculated, for any
standard acquisition strategy. The standard camera is optimized to get the best SNR possible,
taking the deconvolution into account. This yields a precise definition of the best possible snapshot
in presence of known motion. This best snapshot is used later on as a reference in terms of SNR. In
section 2 the Levin et al. motion-invariant photography is proven to be a particular case of the general
analog flutter shutter theory. The SNR of the motion-invariant photography apparatus is computed
and compared with the other flutter shutter strategies. This section also proposes to implement the
motion-invariant photography kernel using a numerical flutter shutter. This permits to generalize the
motion-invariant photography method to the case where the direction of the relative velocity v is not
a priori known.

Chapter VI proves that the use of any flutter shutter does not increase indefinitely the SNR of
the sharp recovered image. It is proven that the best flutter shutter entails a 17% increase of the
SNR compared to the best snapshot. It is also proven that, even though the exposure time remains
unchanged, the flutter shutter does beat the standard camera with classic aperture. These two results
are the flutter shutter paradoxes.

Chapter VII proposes a solution to the first flutter shutter paradox theorem provided the probability
density of the observed velocities is known. Section 1 gives analytical formulae that link an optimal
flutter shutter code with any probability density of the expected velocities. A backward analysis,
computing the probability density of any (patented) code is given in section 2. This framework is also
applied to the standard camera in section 3.

All results are illustrated in chapter VIII. Section 1 shows simulations of several flutter shutter
strategies, including the Agrawal et al. flutter shutter code and the Levin et al. motion-invariant
photography. A reverse engineering of classic flutter shutter codes is performed in section 2. Section 3
provides optimized codes and comparisons with the best snapshot on average, for centered-Gaussian,
uniform (with different sdt-dev σ and ranges) and an handcrafted distribution of the velocity.
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Chapter II

Still Photography Theory

Abstract : This chapter starts by modeling the stochastic photon capture by a light sensor, given
that the photon flux is a Poisson space-dependent emission. It takes into account both the classic shot
noise and the obscurity noise. To cope with the fact that the image noise is colored after deconvolution,
a “spectral” definition is used for the signal to noise ratio (SNR). The SNR is computed without
approximation, from the proposed model. The modeling will treat in the same formalism all possible
types of flutter shutter, including an analog model, a digital model, the classic Agrawal et al. flutter
shutter, and the Levin et al. motion-invariant photography.

1 Mathematical modeling

This section presents a continuous stochastic model of photons captured by a sensor array. The model
applies to a standard image acquisition on still or moving landscapes, provided the motion is uniform
and stationary. Without loss of generality (w.l.o.g.) the formalization will be done in the case where
the sensor array is 1D and the landscape moves in the direction given by the sensor.

Let Pl : R+ × R be a bi-dimensional Poisson process of intensity l(t, x), ∀(t, x) ∈ R+ × R (here l is
called landscape, t and x are the time and spatial positions, respectively). This means that for every
a, b, t1, t2 (with a < b and 0 ≤ t1 < t2) Pl([t1, t2]× [a, b]) is a Poisson random variable with intensity∫ t2
t1

∫ b
a l(t, x)dxdt. The theoretical observation of a pixel sensor (photon counter) of unit length centered

at x during the time span [0,∆t] is a Poisson random variable

Pl

(
[0,∆t]× [x− 1

2 , x+ 1
2]
)
∼ P

(∫ ∆t

0

∫ x+ 1
2

x− 1
2

l(t, y)dydt
)

where [x− 1
2 , x+ 1

2 ] represents the normalized sensor unit, and X ∼ P means that a random variable
X has law P . In other terms the probability to observe k photons coming from the landscape l seen
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at the position x on the time interval [0,∆t] and using a normalized sensor is

P

(
Pl

(
[0,∆t]× [x− 1

2 , x+ 1
2]
)

= k

)
=

(∫∆t
0
∫ x+ 1

2
x− 1

2
l(t, y)dydt

)k
e
−
(∫ ∆t

0

∫ x+ 1
2

x− 1
2
l(t,y)dydt

)
k! .

2 The still photography case

In the classic still photography set up, l(t, x) = l(x), which makes of Pl : R+ × R a bi-dimensional
time stationary and spatially inhomogeneous Poisson process of intensity l(x), ∀(t, x) ∈ R+×R. Thus
for every a, b, t1, t2 (s.t a < b and 0 ≤ t1 < t2) Pl([t1, t2] × [a, b]) is a Poisson random variable with
intensity

∫ t2
t1

∫ b
a l(x)dxdt = |t2 − t1|

∫ b
a l(x)dx (by stationarity of the process).

Then the theoretical observation of a pixel sensor (photon counter) of unit length centered at x
using an exposure time of ∆t is a Poisson random variable

Pl

(
[0,∆t]× [x− 1

2 , x+ 1
2]
)
∼ P

(∫ ∆t

0

∫ x+ 1
2

x− 1
2

l(y)dydt
)

∼ P
(
∆t(1[− 1

2 ,
1
2 ] ∗ l)(x)

)
where ∆t is the exposure time, using a normalized sensor of unit length, and ∗ denotes the convolution
(viii). (Here and in the rest of the text, Latin numerals refer to the formulas in the final glossary
page ix.) For sampling purposes we assume that the theoretical landscape l is seen through an optical
system with a point spread function g.

Definition We call ideal landscape the deterministic function

u = 1[− 1
2 ,

1
2 ] ∗ g ∗ l (II.1)

where g is the point spread function of the optical system providing a cut off frequency.

In other words, thanks to the convolution with g the acquisition system is able to sample u. From the
imaging point of view if the center of the pixel sensor is x then u(x) represents the ideal (noiseless)
pixel landscape value, which unfortunately can only be obtained after infinite exposure time.

Definition (Ideal acquisition system.) The image acquired by the ideal acquisition system, before
sampling, corresponds to samples of the Poisson process Pl. The intensity u (ideal landscape value)
is related to the landscape l by (II.1) and is band limited.

Pl([t1, t2]× [x− 1
2 , x+ 1

2]) ∼ P

(∫ t2

t1
u(x)dt

)
∼ P (|t2 − t1|u(x)) . (II.2)
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Definition (Real acquisition system with noise included in the landscape.) A more realistic acqui-
sition system adds a landscape independent noise also known as dark noise (or obscurity noise or
thermal noise). Assuming that this noise has variance η (II.2) entails

Pl+η([t1, t2]× [x− 1
2 , x+ 1

2])) ∼ P (|t2 − t1|(u(x) + η)) . (II.3)

Independently of their thermal cause, thermal photon emission is Poissonian. Furthermore, at each
pixel sensor the number of thermal photons caught is independent of the number of photons caught
coming from the landscape u. Therefore, the sum of the numbers of thermal and landscape photons
hitting the sensor is a Poisson random variable whose intensity is the sum of the thermal and landscape
intensities. Hence, all computations using the "noisy" landscape u + η remain formally the same as
with the noiseless ideal acquisition system defined in (II.2). The estimator considered is unbiased.
Nevertheless this means that, in the sequel u+η is estimated, not u. However, notice that u and u+η

only differ by a constant which only affects the mean of the image and does not change the perceptual
quality. As a matter of fact it only impacts the null frequency of the SNR function as it is defined
by Boracchi et al. in [12] and does not change the ‘spectral-averaged” SNR of section 4 compared
to estimating u. Therefore, w.l.o.g. we will assume that u already contains the obscurity noise in
itself. Notice that η being a constant, u + η and u have the same cut off frequency. We will also
always assume in the sequel that u ∈ L1 ∩L2(R). This assumption will be necessary to apply some of
the mathematical formulas, but represents no artificial restriction on the acquisition physical model.
Indeed, first, the average photon emission is always bounded. Second, taking a large enough support,
we can always suppose w.l.o.g. that the landscape has bounded support and that the acquisition time
is large but not infinite. Thus we can assume that the noise is zero at infinity. Under these conditions
u ∈ L1 ∩ L2.

3 Sampling, interpolation

In the following the landscape u is assumed band limited, namely û (see the definition (xxiv) of
Fourier transform in the glossary) is supported in [−π, π] and therefore can be sampled at a unit rate.
This hypothesis is again no restriction, being justified by the frequency cutoff provided by the optical
kernel g. The discrete sensor observations, or samples, will be denoted by e(n) for n ∈ Z. (Under
a very long exposure T of a static scene, by the law of large numbers we have e(n)

T → u(n), and
u(n) = Ee(n).)

Definition Given a discrete array observation e(n), n ∈ Z, its band limited interpolate e(x) for x ∈ R
can be defined by Shannon-Whittaker interpolation as

e(x) =
∑
n∈Z

e(n)sinc(x− n) ( see in (xxix) the definition of sinc.) (II.4)
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Notice that in the deterministic ideal case, e(n) = u(n) and, u being band-limited, we would deduce
e(x) = u(x) from e(n) = u(n). By (II.4) we also have

ê(ξ) =
∑
n∈Z

e(n)e−inξ1[−π,π](ξ). (II.5)

4 Noise measurement

Definition In the following we call signal to noise ratio (SNR) of a random variable X the ratio

SNR(X) := |EX|√
var(X)

. (II.6)

For example if uest(x) (resp. ûest(ξ)) is an estimation of the landscape u(x) (resp. û(ξ)) based on a
noisy observation of u,

SNR(uest(x)) := |Euest(x)|√
var(uest(x))

. (II.7)

Likewise, we call “spectral SNR” of uest the frequency dependent ratio defined by

SNRspectral(ûest(ξ)) := |Eûest(ξ)|√
(var(ûest(ξ))

for ξ ∈ [−π, π] (II.8)

and introduced by Boracchi et al. in [12]. We call “spectral-averaged” SNR the ratio defined by

SNRspectral−averaged(ûest) :=
1

2π
∫
|Eûest(ξ)|1[−π,π](ξ)dξ√

1
2π
∫
var(ûest(ξ)1[−π,π](ξ))dξ

. (II.9)

Lets show first that this definition makes sense. In the sequel, the considered estimator is unbiased.
This implies that Eûest(ξ) = û(ξ). Furthermore, since u ∈ L1(R) by Riemann-Lebesgue’s we get that
û(ξ) is continuous, so is |Eûest(ξ)| = |û(ξ)|. Hence |Eûest(ξ)| is integrable on the interval [−π, π]. The
variance term var(ûest(ξ)1[−π,π](ξ)) is positive. Thus,

∫
var(ûest(ξ)1[−π,π](ξ))dξ converge in R̄+. It

would be infinite if some frequency interval is lost and, in this case the SNRspectral−averaged(ûest) = 0.
This means that the above definition is correct, at least in a mathematical sense. Now, lets turn to
its meaning.

Proposition 4.1. Given ûest(ξ) an unbiased estimator of û(ξ) then

SNRspectral−averaged(ûest) = C

RMSE(u, uest)
.

Proof. The mean squared error (MSE) can be decomposed into bias and variance terms. Since
the estimator is unbiased the bias term is zero. Its variance term is equal to

∫
var(uest(ξ))dξ =
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II.5 Standard acquisition, the SNR with no blur

∫
E|uest(ξ)|2dξ +

∫
|Euest(ξ)|2dξ. Furthermore, on one hand we have∫

E|ûest(ξ)1[−π,π](ξ)|2dξ = E

(∫
|ûest(ξ)1[−π,π](ξ)|2dξ

)
(by Fubini for positive functions)

= 2πE
(∫
|uest(x)|2dx

)
= 2π

∫
E|uest(x)|2dx (by Fubini, again).

On the other hand, we have∫
|Eûest(ξ)1[−π,π](ξ)|2dξ =

∫
|û(ξ)1[−π,π](ξ)|2dξ (unbiased estimator)

= 2π
∫
|u(x)|2dx = 2π

∫
|Euest(x)|2dx.

Consequently,

SNRspectral−averaged(ûest) =
1

2π
∫
|Eûest(ξ)|1[−π,π](ξ)dξ√∫
var(uest(x))dx

= Constant

RMSE(u, uest)
.

Notice that, the naive average of the SNR function defined in [12], would not reflect the RMSE.
Worse, it would not vanish if some frequency interval is lost. Such information loss implies that the
flutter shutter is not invertible. The invertibility of the flutter shutter is discussed and the inverse
filter is defined page 25.

The reason of these definitions is to compare in terms of SNR the flutter shutter method to a
standard “quick enough to be sharp" snapshot image acquisition strategy in the sense of (II.6), (II.7),
(II.8), (II.9).

5 Standard acquisition, the SNR with no blur

From the acquisition system definition (II.3) the observed image at position x using the standard
image acquisition strategy with an exposure time L∆t can be any realization of

Pl([0, L∆t]× [x− 1
2 , x+ 1

2]) ∼ P

(∫
[0,L∆t]

u(x)dt
)
∼ P (L∆tu(x)) . (II.10)

Notice that in this case the expected value and variance of a pixel sensor at position x are equal to
L∆tu(x).

Theorem 5.1. (Fundamental theorem of photography)
In the case of a still image, the SNR satisfies SNR(x) =

√
u(x)L∆t, where L∆t is the total exposure

time. It is therefore proportional to the square root of both the exposure time and the light intensity.

Remark In a passive optical system we have no control over the landscape light emission u(x). No
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Chapter II. Still Photography Theory

lighting is possible, to boost the photon emission. Thus the only secure way to increase the SNR is
to increase the exposure time L∆t.

Proof. Let uest ∼
Pl([0,L∆t]×[x− 1

2 ,x+ 1
2 ])

L∆t be the estimate of the ideal landscape u. The relation (II.10)
entails

uest(x) ∼ P (L∆tu(x))
L∆t .

Then E(uest(x)) = u(x) and uest(x) is an unbiased estimator for u(x). The variance of uest(x) is

var(uest(x)) = L∆tu(x)
(L∆t)2 = u(x)

L∆t .

It follows from (II.7) that SNR(uest)(x) =
√
u(x)L∆t.

6 Image acquisition with a moving landscape

In the following the camera focal plane is always taken as reference plane. The camera is always
assumed to move parallel to its focal plane in a straight trajectory in the x direction (Fig. A.1).
Hence the acquisition process is made in the x direction only. The camera moves straight at a speed
v(t) (counted in pixels per second) and the landscape is static. These assumptions may seem simplistic,
but are actually technologically relevant, as they include the scanning of planar scenes like documents,
or of scenes seen at a long distance, like aerial video and push broom satellites.

Thus from now on we assume l(t, x) = l(x− tv(t)), and mainly v(t) ≡ v where l is the underlying
stationary landscape model (section 2). Hence all the former discussion made on the acquisition
system, sampling and interpolation holds. This section focuses on the mathematical model for standard
photography, where there is either a motion blur in a single continuous exposure, or the acquisition
of an image burst (several consecutive snapshots with shorter exposure). We shall give the conditions
under which the exposure is short enough to get a quality photograph, and evaluate the SNR in
all three cases: snapshots, longer exposure with motion blur, and image burst made of short enough
snapshots.

6.1 Standard motion blur

In the following we fix an exposure time unit ∆t, and measure exposure times as its multiples L∆t.

Theorem 6.1. The standard motion blur is equivalent to an image obtained by a convolution of the
ideal landscape u by a fixed (window shaped) kernel 1[0,b] where b is the blur length, equal to Lv∆t.

Proof. The ideal landscape u is moving in the camera frame at a speed v (counted in pixels per second)
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II.6 Image acquisition with a moving landscape

Figure A.1 – Acquisition system: the camera plane moves parallel to the focal plane in fixed direction, with
scalar speed v(t). x − axis : position, y − axis : intensity of photon emission by the landscape at position x.
The exposure time L∆t is assumed short enough, or the camera elevation large enough to ensure that there is no
apparent deformation of the landscape due to its varying height.

and using (II.3) we get that the acquired image at position x can be any realization of

Pl([0, L∆t]× [x− 1
2 , x+ 1

2]) ∼ P

(∫ L∆t

0
u(x− vt)dt

)

∼ P

(
(1
v
1[0,Lv∆t] ∗ u)(x)

)
.

In this case the expected value and variance of a pixel sensor at position x are equal to 1
v (1[0,Lv∆t] ∗

u)(x). The quantity Lv∆t is nothing but the length of the blur b (in pixels).

Remark The convolution with h = 1[0,Lv∆t] (standard blur) function is a non-invertible transforma-
tion as soon as the first zero of the Fourier transform (FT) of h is in the support of û. This makes
ill posed any restoration process of u. The purpose of the flutter shutter method will be to replace
1[0,Lv∆t] with a function whose convolution remains invertible for arbitrary Lv∆t = b. If instead, as
considered in the next paragraph, the first zero of ĥ is outside the support of û, then the motion blur
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Chapter II. Still Photography Theory

is said negligible and it is actually invertible.

7 The multi-image fusion to improve the SNR

The multi-image acquisition strategy consists in taking a burst of L images using a ∆t exposure time.
The exposure time ∆t is taken small enough, so that the elementary blur of each one of the L images
is negligible (see chapter III section 1.3). Each image is registered and added to the former ones to
obtain a single accumulated image. See [15] for an analysis of the feasibility of this technique. We
shall assume here that the registration operation is error-free, so that the operation amounts to an
increased exposure time with a stationary landscape.

Theorem 7.1. The multi-image acquisition strategy using L images increases the SNR by a factor
of
√
L compared to a standard snapshot.

Proof. Before the registration operation the k-th image observed (for k ∈ {0, L− 1}) at position x is
(a realization of)

Pl([k∆t, (k + 1)∆t]× [x− 1
2 , x+ 1

2]) ∼ P

(∫ ∆t

0
u(x− vk∆t− vt)dt

)

∼ P

(1
v

(1[0,v∆t] ∗ u)(x− vk∆t)
)
.

The registration operation consists in a perfect translation τ(x) = x+ vk∆t of the previous observed,
hence simulating a stationary landscape. After the registration operation the k-th image observed for
k ∈ {0, L− 1} at position x is (a realization of)

P

(1
v

(1[0,v∆t] ∗ u)(x)
)
.

Finally the image is constructed by adding all observations, so it is (a realization of)

L−1∑
k=0

P

(1
v

(1[0,v∆t] ∗ u)(x)
)
∼ P

(
L

1
v

(1[0,v∆t] ∗ u)(x)
)
. (II.11)

(This last equivalence uses the independence of the Poisson random variables, justified by the disjoint
time intervals). Following the same scheme used in (Thm. 1.1) from (II.11) we get the estimated

uest,mul ∼
v

L
P

(
L

1
v

(1[0,v∆t] ∗ u)(x)
)

whose variance is L times smaller. Thus the L factor remains in all equations. Finally from (V.1, V.6)
we deduce that the SNR is increased by a

√
L factor.
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II.7 The multi-image fusion to improve the SNR

In other words the use of a multi-image fusion with a sufficient L permits to achieve any SNR.
This result will contrast with the first flutter shutter paradox that an infinite time exposure does not
grant an infinite SNR. This is the object of the next chapters.
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Chapter III

The Numerical Flutter Shutter

Abstract : This chapter defines a digital implementation of the flutter shutter compatible with
recent technologies. This set up is the most flexible, adaptive to all motion and allows for negative
gains. Furthermore, the numerical flutter shutter does not reduce the number of photons caught by
the sensor and it is proven later on that it yields the best possible SNR. It is investigated using the
model of photon acquisition of chapter II. A closed formula is obtained giving explicitly the SNR of
the sharp deconvolved image. The numerical flutter shutter gain function is in principle piecewise
constant. Nevertheless, it is useful for the theory to extend it to continuous gain functions. Anyway,
a reverse formula permits to get back an equivalent piecewise constant numerical flutter shutter from
any continuous gain function.

After having treated the classic image acquisition strategies, we are now in a position to treat the
various flutter shutter strategies and to compare them to the classic ones. Two things are at stake:
first, to prove that the various flutter shutters actually work, and second to evaluate the SNR of the
resulting image and to compare it to the SNR of classic strategies. The hope would be that the flutter
shutter retains the very interesting feature of the multi image denoising, namely an increase of the
SNR by a factor proportional to

√
L∆t, the total exposure time. We shall see that this is not so.

1 The numerical flutter shutter

The numerical flutter shutter method consists in a numerical sensor gain modification taking place
after the acquisition by the sensor. Roughly speaking the camera takes a burst of L images using an
exposure time ∆t. The k-th image is multiplied, for k ∈ 0, ..., L− 1, by an αk ∈ R gain. Then all
images are added to obtain one observed image, the flutter shutter. The exposure time ∆t must be
small enough so the blur of each image is negligible (definition in chapter V section 1). This technique is
similar to the multi-image acquisition strategy but does not use any registration technique. According
to, for example, [64, 89] an image sensor can have a duty ratio of nearly 100% (the duty ratio is the
ratio of light integration time over readout, storage, reset times - that is the percentage of useful time).
It means that a sensor can integrate light without interruption. Thus, the numerical flutter shutter,
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Chapter III. The Numerical Flutter Shutter

as it is described below without “dead time” between two consecutive gains ak is perfectly reasonable
from a technological viewpoint. Nevertheless, it seems that its interest is limited: why not keeping all
images instead of adding them all? One of the obvious reasons is compression, particularly for Earth
observation satellites. In that case the motion blur due to a drift in satellite trajectory estimate could
be eliminated by a flutter shutter, without any additional transmission (or computational) burden if
only the flutter shutter image (the sum) is transmitted. The k-th acquired elementary image at a
pixel at position n is a realization of

P

(∫ (k+1)∆t

k∆t
u(n− vt)dt

)
.

The flutter shutter observation is obtained by combining the k-th output with weight αk. Thus the
flutter shutter output at a pixel centered at n is

obs(n) ∼
L−1∑
k=0

αkP

(∫ (k+1)∆t

k∆t
u(n− vt)dt

)
(III.1)

where by construction obs(n) are obtained for n ∈ Z and are independent. Indeed, the sensors are
disjoint and do not receive the same photons. In the following it will be useful to associate with the
flutter shutter its code defined as the vector (αk)k=0,··· ,L−1, and its flutter shutter function defined by
α(t) = αk for t ∈ [k∆t, (k + 1)∆t[.

Definition Let (α0, ..., αL−1) ∈ RL be a flutter shutter code. We call numerical flutter shutter samples
at position n of the landscape u at velocity v the random variable

obs(n) ∼
L−1∑
k=0

αkP

(∫ (k+1)∆t

k∆t
u(n− vt)dt

)
. (III.2)

We call numerical flutter shutter its band limited interpolate

obs(x) ∼
∑
n∈Z

obs(n)sinc(x− n).

We call flutter shutter function the function

α(t) =
L−1∑
k=0

αk1[k∆t,(k+1)∆t[(t). (III.3)

Remark It is good to keep in mind the following trivial and less trivial examples:

1. αk = 1 ∀k ∈ {0, ..., L− 1} (pure accumulation prone to motion blur)

2. αk = 0 or 1 ∀k ∈ {1, ..., L− 1} with
∑
αk = L

2 (Agrawal et al.’s flutter shutter has this generic
form)
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III.1 The numerical flutter shutter

3. α0 = 1 and αk = 0 ∀k ∈ {1, ..., L− 1} (standard snapshot)

1.1 The motionless case v = 0

We shall first consider the ideal motionless case where v = 0. In this situation the acquired image has
simply lost some photons with respect to an accumulation image, because some of the αk are null.
Thus in the motionless case, the flutter shutter cannot but decrease the SNR. This is easily confirmed
by the following calculation. We have

obs(x) ∼
L−1∑
k=0

αkP (∆tu(x)) .

Thus

E (obs(x)) =
L−1∑
k=0

αk∆tu(x) (III.4)

and

var (obs(x)) =
L−1∑
k=0

α2
k∆tu(x). (III.5)

From (III.4) we deduce that the estimated landscape uest is obtained using

uest(x) ∼ obs(x)∑L−1
k=0 αk∆t

. (III.6)

Let r ∼ uest − u be the residual error then from (III.4-III.5) we get

E(r(x)) = E (obs(x))∑L−1
k=0 αk∆t

− u(x) = 0.

Hence F(uest) is an unbiased estimator for û. Moreover, from (III.5, III.6) we deduce

var (r(x)) = var (obs(x))
(
∑L−1
k=0 αk)2∆t2

= u(x)
∑L−1
k=0 α

2
k

(
∑L−1
k=0 αk)2∆t

= u(x)
∑L−1
k=0 α

2
k

(
∑L−1
k=0 αk)2∆t

.

Thus, by (II.7), SNR(uest) =
√
u(x)∆t (

∑L−1
k=0 αk)2∑L−1
k=0 α

2
k

. Since by Jensen’s inequality applied to the convex

x 7→ x2 function we always have 1
L(
∑L−1
k=0 αk)2 ≤

∑L−1
k=0 α

2
k, the (numerical) flutter shutter is less

favorable than a mere accumulation. To give an example, in the case of a Agrawal et al. code where
αk = 0 or 1 and the number of non null αk is L/2. Then the SNR is

√
u(x)∆t (L/2)2

L/2 =
√

u(x)∆tL
2 , to

be compared to the pure accumulation case where αk = 1 and the SNR is
√
u(x)∆tL2

L =
√
u(x)∆tL.
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Chapter III. The Numerical Flutter Shutter

Thus the Agrawal et al. flutter shutter entails in the motionless case a
√

2 loss factor for the SNR.
We now pass to the general more interesting case, namely when there is a motion.

1.2 Flutter shutter in presence of motion

Theorem 1.1. The observed samples of the numerical flutter shutter are such that, for n ∈ Z

E (obs(n)) =
(1
v
α

(
.

v

)
∗ u
)

(n) (III.7)

and

var(obs(n)) =
(1
v
α2
(
.

v

)
∗ u
)

(n). (III.8)

Proof. From the numerical flutter shutter samples definition (III.2),

E (obs(x)) =
L−1∑
k=0

αk

∫ (k+1)∆t

k∆t
u(x− vt)dt =

∫ L∆t

0
α(s)u(x− vs)ds (III.9)

where we recall that

α =
L−1∑
k=0

αk1[k∆t,(k+1)∆t[.

Thus,

E (obs(x)) =
∫ Lv∆t

0

1
v
α(y
v

)u(x− y)dy =
(1
v
α

(
.

v

)
∗ u
)

(x). (III.10)

Similarly from (III.1)

var(obs(x)) =
L−1∑
k=0

α2
k

∫ (k+1)∆t

k∆t
u(x− vt)dt =

(1
v
α2
(
.

v

)
∗ u
)

(x).

Notice that obs(x) is not necessarily a Poisson random variable. However, if all αk are equal to 0
or 1 then by (III.9)

obs(x) ∼ P

(1
v
α

(
.

v

)
∗ u
)

(x),

because we are adding independent Poisson random variables. On the other hand, if for some k,
αk 6∈ {0, 1}, then if X ∼ P(λ) then αkX is not a Poisson random variable.
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III.1 The numerical flutter shutter

Ideal numerical flutter shutter
The formulas of Theorem 1.1 giving the samples obtained by flutter shutter appear not to depend

on the particular form of α as a piecewise constant function on a finite set of intervals with length ∆t.
As a matter of fact, we can envisage any function α ∈ L2(R) to be numerical flutter shutter, for an
ideally controlled camera where at each instant the gain α(t) is changed. This leads to the following
definition and corollary.

Corollary 1.2. We call continuous numerical flutter shutter any band-limited and bounded gain func-
tion α ∈ L2(R). Then the formulas (III.7) and (III.8) of Theorem 1.1 are still valid.

Proof. By assumption the observed ideal landscape u belongs to L1∩L2(R). We recall that L1∗L2 ⊂ L2

and L2 ∩ L2 ⊂ C0(R) (the set of continuous functions on R tending to 0 at infinity). Furthermore,
α being band limited is continuous. Being also bounded, the expectation and variance functions of
(III.7) and (III.8) are continuous and therefore well defined at any point. It remains to show that
these formulas are valid for a general gain function. Consider for this an approximation of α(t) by
a finite numerical flutter shutter code (αk)k such that (αk)k tends to α in L1, L2 and L∞, (that is,
uniformly) when k → ∞. The formulas (III.7) and (III.8) are valid for (αk)k, and the corresponding
formulas for α are deduced by passing to the limit.

From now on, unless specified otherwise, by numerical flutter shutter, and by α we shall mean a
continuous numerical flutter shutter.

1.3 The inverse filter of a numerical flutter shutter

Step 1: the noiseless case Let us examine first the discrete noiseless case, when obs(n) =(
1
vα
(
.
v

)
∗ u
)

(n) and obs(n) is obtained for n ∈ Z but being band limited, can be interpolated to
obs(x), for any x ∈ R. Then

F

(1
v
α

(
.

v

)
∗ u
)

(ξ) = û(ξ)α̂(ξv).

By hypothesis (see chapter II section 2) we assumed that û(ξ) = 0 for |ξ| > π. Hence for the
invertibility we must only require that |α̂(ξv)| > 0 for ξ ∈ [−π, π].

Definition We say that a flutter shutter α is invertible (for velocities |v| smaller than |v0|) if |α̂(ξ)| > 0
for ξ ∈ [−π|v0|, π|v0|].

If the flutter shutter is invertible, we can consider the inverse filter γ defined by

γ̂(ξ) =
1[−π,π](ξ)
α̂(ξv) . (III.11)
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Chapter III. The Numerical Flutter Shutter

Since α ∈ L1(R), ξ 7→ α̂(ξ) is bounded and continuous. If α̂(ξv) is nonzero on [−π, π], γ̂ will therefore
be bounded and supported on [−π, π]. In consequence, under this assumption, γ is C∞, bounded, and
band-limited.

We shall as logical define the recovered landscape from noisy data by the formulae that would be
valid for noiseless data. Assume that we observe e(n) = E(obs(n)) for n ∈ Z and wish to compute
ê(ξ) from the discrete observed (e(n))n∈Z. Since e(x) is band limited, we can interpolate it using the
band limited interpolation (II.4). The band limited interpolate of the ideal observation is

e(x) =
∑
n∈Z

e(n)sinc(x− n). (III.12)

Then from (III.12) we have

ê(ξ) =
∑
n∈Z

e(n)e−inξ1[−π,π](ξ). (III.13)

So the ideal deconvolved landscape d(x) obtained by combining (III.11) and (III.13) is

d̂(ξ) =
∑
n∈Z e(n)e−inξ1[−π,π](ξ)

α̂(ξv) . (III.14)

We shall now adopt the same formulae for the noisy case.

Flutter shutter landscape recovery in the real noisy case

Definition Assume that a flutter shutter with code α is invertible. We call estimated landscape
uest,num of the numerical flutter shutter the function defined by

F(uest,num)(ξ) =
∑
n∈Z obs(n)e−inξ1[−π,π](ξ)

α̂(ξv) , (III.15)

where the observed obs(n) samples (III.1) are used instead of the ideal e(n) in (III.14).

Theorem 1.3. The numerical flutter shutter has a spectral SNR (II.8) equal to

SNR(ξ) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L2

;

the expected value of the estimated landscape F(uest,num)(ξ) from the observed samples is

E(F(uest,num)(ξ))) = û(ξ)1[−π,π](ξ);
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III.1 The numerical flutter shutter

and its variance is

var(F(uest,num(ξ))) =
||α||2L2 ||u||L11[−π,π](ξ)

|α̂(ξv)|2 . (III.16)

Proof. By (III.8, III.15),

var(F(uest,num)(ξ))

=
var

(∑
n∈Z obs(n)e−inξ1[−π,π](ξ)

)
|α̂(ξv)|2

=
∑
n∈Z var(obs(n))|e−inξ1[−π,π](ξ)|2

|α̂(ξv)|2

=
∑
n∈Z

(
1
vα

2 ( .
v

)
∗ u
)

(n)1[−π,π](ξ)

|α̂(ξv)|2

=
|| 1vα

2 ( .
v

)
∗ u||L11[−π,π](ξ)
|α̂(ξv)|2 (III.17)

=
1
v ||α

2 ( .
v

)
||L1 ||u||L11[−π,π](ξ)
|α̂(ξv)|2 =

1
v ||α

(
.
v

)
||2L2 ||u||L11[−π,π](ξ)
|α̂(ξv)|2

=
v
v ||α||

2
L2 ||u||L11[−π,π](ξ)
|α̂(ξv)|2 =

||α||2L2 ||u||L11[−π,π](ξ)
|α̂(ξv)|2 .

In this proof the crucial point is the use of the Poisson summation formula (xxx) in equation (III.17).
Following the same scheme and starting from (Thm. III.7) E(F(uest,num(ξ))(ξ) can be computed by
using (for the derivation of the third line) the second Poisson formula (xxx), and the fact that u is
band limited with û supported on [−π, π]:

E(F(uest,num(ξ))) =
E

(∑
n∈Z obs(n)e−inξ1[−π,π](ξ)

)
α̂(ξv)

=

(∑
n∈Z

(
1
vα
(
.
v

)
∗ u
)

(n)e−inξ1[−π,π](ξ)
)

α̂(ξv)

=
∑
m∈Z F

(
1
vα
(
.
v

)
∗ u
)

(ξ + 2πm)1[−π,π](ξ)

α̂(ξv)

=
F
(

1
vα
(
.
v

)
∗ u
)

(ξ)1[−π,π](ξ)

α̂(ξv)

=
v
v α̂(ξv)û(ξ)1[−π,π](ξ)

α̂(ξv) = û(ξ)1[−π,π](ξ).
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Chapter III. The Numerical Flutter Shutter

From (III.16) and using the definition of the spectral SNR (II.8), we obtain

SNRspectral(uest,num(ξ)) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L2

.

Remark From (III.16) we also deduce that var(F(uest,num)(ξ)) is invariant by changing α into λα
for λ 6= 0 (rescaling): as could be expected, the flutter shutter code is defined up to a multiplicative
constant.

Remark Going back to the case where α is a discrete numerical flutter shutter, we can see a necessary
condition on ∆t for its invertibility. Indeed, from (III.3) follows that

α̂(ξ) =
L−1∑
k=0

αkF(1[k∆t,(k+1)∆t[)(ξ) = ∆tsinc(ξ∆t2π )e
−iξ∆t

2

L−1∑
k=0

αke
−ikξ∆t. (III.18)

Notice that this is not the DFT (discrete Fourier transform) of the vector α. This means that, in the
literature on the flutter shutter, the simulations are neglecting the motion blur on the intervals with
∆t length and that ∆t must satisfy |v|∆t < 2 to have α̂(vξ) invertible on the whole support [−π, π]
of û.

2 Flutter shutter design: from continuous to discrete

Even if the above theory deals with continuous and discrete codes as well, in practice any continuous
flutter shutter code found by some abstract optimization must eventually be realized as a feasible
device. Thus it must be replaced by a piecewise constant one on intervals of length ∆t. Assume that
we have designed a continuous flutter shutter function β ∈ L2(R), invertible for all velocities below
|v|, which means β̂(ξv) 6= 0 for ξ ∈ [−π, π]. The values of β̂(vξ) outside [−π, π] do not matter for
our scopes, the filter and inverse filter being always applied to band-limited functions. Thus, we can
always assume that β̂(vξ) is zero outside [−π, π]. Our goal is to deduce from β a numerical flutter
shutter code α which coincides with β at velocity v on the spectrum of u. In other terms, we want
α̂(vξ) = β̂(vξ) for ξ ∈ [−π, π]. Under that condition, the observed signal obs(n) =

(
1
vα
(
.
v

)
∗ u
)

(n)
by α or β will be identical. Furthermore, from Thm. III.7 we will have

E (ôbs(ξ)) = α̂(vξ)û(ξ) = α̂(vξ)1[−π,π](ξ)û(ξ) = β̂(vξ)û(ξ),

meaning that the expectation of spectrum of the observed signal is unchanged (but not necessarily its
variance).

The question is to find an equivalent code function α(t) =
∑
k∈Z αk1[k∆t,(k+1)∆t[(t), as defined by

(III.3), but not necessarily compactly supported. Our requirement is that α̂(ξv) = β̂(ξv) on [−π, π].
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III.2 Flutter shutter design: from continuous to discrete

By (III.18), a numerical flutter shutter has the general form (where we allow for an infinite code
(αk)k∈Z), α̂(vξ) = ∆tsinc(v∆tξ

2π )e
−iv∆tξ

2
∑
k αke

−ikv∆tξ. We want α̂(vξ) = β̂(vξ) for ξ ∈ [−π, π], which
is equivalent to having for ξ ∈ [π, π],

∆t

∑
k∈Z

αke
−ik∆tvξ

 e−i v∆tξ
2 sinc(v∆tξ

2π ) = β̂(vξ),

and therefore
β̂(vξ)ei

v∆tξ
2

∆tsinc(v∆tξ
2π )

1[−π,π] =
∑
k∈Z

αke
−ikv∆tξ

1[π,π]. (III.19)

The left member of this equation belongs to L2([−π, π]) provided the sinc in the denominator does not
vanish, which is true if ∆t|v| < 2. The above formula appears to be the Fourier series decomposition
of the left hand member on the Fourier basis on the interval [−T2 , T2 ] satisfying 2π

T = ∆t|v|, which gives
T = 2π

∆t|v| . Moreover we assume that |v|∆t ≤ 1. Indeed this supplementary condition is mandatory
for the temporal sampling of the left hand member of (III.19) and get T

2 > π. Thus, if |v|∆t ≤ 1
[−T2 , T2 ] contains [−π, π], implying that (III.19) is correct, and that (αk)k∈Z ∈ l2(Z), are the Fourier
series coefficients (provided |v|∆t ≤ 1)

αk = ∆t|v|
2π

∫ π
∆tv

− π
∆tv

β̂(vξ)ei
v∆tξ

2

sinc(v∆tξ
2π )

1[−π,π]e
ikv∆tξdξ. (III.20)

Thus,

αk = ∆t|v|
2π

∫ π

−π

β̂(vξ)ei
v∆tξ

2

sinc(v∆tξ
2π )

eikv∆tξdξ

= sign(v)
2π

∫ πv∆t

−πv∆t

β̂( ξ
∆t)e

i ξ2

sinc( ξ
2π )

eikξdξ (where sign(x) = 1 if x ≥ 0, 0 otherwise)

= 1
2π

∫ π|v|∆t

−π|v|∆t

β̂( ξ
∆t)e

i ξ2

sinc( ξ
2π )

eikξdξ.

This proves the following theorem.

Theorem 2.1. Let β ∈ L2(R) be a band-limited time convolution kernel satisfying β̂(vξ) 6= 0 for
ξ ∈ [−π, π], in other terms invertible on all band-limited functions and for all velocities below |v|. If
|v|∆t ≤ 1, there exists an invertible flutter shutter code function

α(t) =
∑
k∈Z

αk1[k∆t,(k+1)∆t[(t) (III.21)

with (αk)k∈Z ∈ l2(Z), such that α̂(vξ) = β̂(vξ) on [−π, π]. The coefficients αk of the discrete numerical
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Chapter III. The Numerical Flutter Shutter

flutter shutter are explicitly given by

αk = 1
2π

∫ π|v|∆t

−π|v|∆t

β̂( ξ
∆t)e

i ξ2

sinc( ξ
2π )

eikξdξ. (III.22)

The question arises of whether the discrete numerical flutter shutter α function yields a PSNR
(peak signal to noise ratio) as good as the original β. According to the formula giving the SNR in
Theorem 1.3, we simply have to compare ||α||L2 and ||β||L2 . More precisely, the ratio ||β||L2

||α||L2
gives the

multiplication factor of the SNR obtained with β to get the SNR of the restored image using the
discrete filter α. But by assumption, we have β̂ supported on [−π|v|, π|v|] ||β||2L2(R) = 1

2π ||β̂||
2
L2(R) =∫ πv

−πv |β̂(ξ)|2dξ. On the other hand by construction, α̂ = β̂ on [−πv, πv]. It follows that ||α2||L2(R) ≥
||β2||L2(R).

Thus, we have also proved:

Corollary 2.2. Let β be a continuous numerical flutter shutter. Then its discrete equivalent numerical
flutter shutter has a smaller or equal spectral SNR.
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Chapter IV

The Analog Flutter Shutter

This chapter investigates the classic analog implementation of the flutter shutter using the model of
photon acquisition of chapter II. This analog flutter shutter is a generalization of the original Agrawal
et al. flutter shutter which allows for smoother, non binary, gain functions. For any analog flutter
shutter apparatus, an explicit formula to measure directly the SNR of the deconvolved sharp image is
given. The chapter ends with a comparison of the SNR of analog and numerical flutter shutter.

1 The analog flutter shutter

There are two different acquisition tools implementing a flutter shutter with a moving sensor (or
landscape). The first one has been discussed previously and consists in a mere computational device,
using the maximal sensor capability. In that case obs(x) is given by (III.1) and is not a Poisson random
variable in general. The other technical possibility is to implement the flutter shutter function on the
sensor as an optical (temporally changing) filter. This setup, which corresponds to the technology
proposed by the inventors of the flutter shutter, will be called analog flutter shutter. The Agrawal
et al. flutter shutter method consists in a (binary) temporal mask in front of the sensor. From a
practical point of view the shutter of the camera opens and closes during the acquisition process.
The proposed generalization uses temporal sunglasses allowing smoother (non-binary, non piecewise
constant) gain modifications. The gain at time t α(t) is here defined as the proportion of photons
coming from the noisy landscape u that are allowed to travel to the pixel sensor, meaning that only
positive (actually in [0, 1]) kernels are feasible. The device (roughly speaking a generalized shutter)
controlling the percentage of photons from the landscape allowed to travel to the sensor obviously
takes place before the sensor. On a practical point of view it is realizable by implementing the filters
directly on the stages of a time delay integration (TDI) device. Hence the observation is always a
Poisson random variable. The analog flutter shutter method consists in the design of an invertible
flutter shutter function α(t).

Definition (Analog flutter shutter function.)
Let α(t) ∈ [0, 1] be the gain used at time t. We call analog flutter shutter function any positive function
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Chapter IV. The Analog Flutter Shutter

α ∈ L1(R) ∩ L2(R).

Let α be an (analog) flutter shutter function then the acquired image at position n is (a realization
of)

obs(n) ∼ P

(∫ ∞
−∞

α(t)u(n− vt)dt
)
∼ P

(1
v

(α( .
v

) ∗ u)(n)
)

where obs(n) is known only for n ∈ Z.

Definition Let α be an analog flutter shutter function. We call analog flutter shutter samples at
position n of the landscape u at velocity v the random variable

obs(n) ∼ P

(1
v

(α
(
.

v

)
∗ u)(n)

)
. (IV.1)

We call analog flutter shutter its band limited interpolate

obs(x) ∼
∑
n∈Z

obs(n)sinc(x− n).

Theorem 1.1. The observed samples of the analog flutter shutter are such that, for n ∈ Z

E(obs(x)) = 1
v

(α
(
.

v

)
∗ u)(x) (IV.2)

and

var(obs(x)) = 1
v

(α
(
.

v

)
∗ u)(x). (IV.3)

Proof. Directly from the analog flutter shutter samples definition (IV.1).

The main difference with the numerical flutter shutter is that the observed image is always a
Poisson random variable. The calculations on the analog flutter shutter are almost identical to those
of the numerical flutter shutter.

Theorem 1.2. The analog flutter shutter method has a spectral SNR equal to

SNRspectral(F(uest,ana)(ξ)) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L1

;

the expected value of the estimated landscape F(uest,ana)(ξ) from the observed samples is

E(F(uest,ana)(ξ))) = û(ξ)1[−π,π](ξ);
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IV.1 The analog flutter shutter

and the variance is

var(F(uest,ana(ξ))) = ||α||L1 ||u||L1

|α̂|2(ξv) 1[−π,π](ξ). (IV.4)

Proof. Similarly to the numerical flutter shutter the inverse filter is the inverse filter defined by 1
α̂(vξ)

then

var (F(uest,ana)(ξ)) = var

(∑
n∈Z obs(n)e−inξ

α̂(ξv) 1[−π,π](ξ)
)

=
∑
n∈Z

1
v (α

(
.
v

)
∗ u)(n)

|α̂|2(ξv) 1[−π,π](ξ)

=
1
v ||α

(
.
v

)
∗ u)||L1

|α̂|2(ξv) 1[−π,π](ξ) (by (xxx))

=
1
v ||α

(
.
v

)
||L1 ||u||L1

|α̂|2(ξv) 1[−π,π](ξ) = ||α||L1 ||u||L1

|α̂|2(ξv) 1[−π,π](ξ).

Moreover by the same calculations as for the numerical flutter shutter,

E (F(uest,ana)(ξ)) =
(
E
∑
n∈Z obs(n)e−inξ

α̂(ξv) 1[−π,π](ξ)
)

= û(ξ).

Therefore,

SNRspectral(F(uest,ana))(ξ) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L1

.

A brief summary pointing out the differences between the analog and flutter shutter is given
in Tab.A.1. The analog flutter shutter controls the percentage of photons allowed to travel to the
sensor, therefore only positive functions are implementable. It decreases the number of photons sensed
thus tends to decrease the resulting SNR. On the other hand the numerical flutter shutter requires
piecewise constant flutter shutter functions. Consequently, if a flutter shutter function is positive and
piecewise constant (implementable on both cameras) the numerical flutter shutter should always be
chosen as it leads to a better SNR of the reconstructed image. The question of choice of the flutter
shutter type in the general case is answered in section 2 below.
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Chapter IV. The Analog Flutter Shutter

Type of flutter shutter Numerical flutter shutter Analog flutter shutter

Flutter shutter α(t) =
∑L−1
k=0 αk1[k∆t,(k+1)∆t[(t) α(t) ∈ [0, 1]

function α(t) (with αk ∈ R and ∆t > 0)

E (obs(n))
(

1
vα
(
.
v

)
∗ u
)

(n) 1
v (α

(
.
v

)
∗ u)(n)

(observed)

var(obs(n))
(

1
vα

2 ( .
v

)
∗ u
)

(n) 1
v (α

(
.
v

)
∗ u)(n)

(observed)

Inverse filter γ̂(ξ) 1[−π,π](ξ)
α̂(ξv)

1[−π,π](ξ)
α̂(ξv)

E(F(uest)(ξ))) û(ξ)1[−π,π](ξ) û(ξ)1[−π,π](ξ)
(deconvolved)

var(F(uest(ξ)))
||α||2

L2 ||u||L1

|α̂(ξv)|2 1[−π,π](ξ)
||α||L1 ||u||L1
|α̂|2(ξv) 1[−π,π](ξ)

(deconvolved)

(spectral) SNR(ξ) |û(ξ)||α̂(ξv)|√
||u||L1 ||α||L2

1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L1

1[−π,π](ξ)

Table A.1 – This table summarizes the results on numerical and analog flutter shutters. The first column
describes the structure of the numerical flutter shutter, the second describes the analog flutter shutter. The first
line indicates which kind of flutter shutter functions α(t) are implementable with respect to the flutter shutter type.
The second (resp. the third) gives the expected value (resp. variance) of the (observed) flutter shutter. The fourth
shows the inverse filter to be applied to the flutter shutter in order to deconvolve. The fifth (resp. the sixth) gives
the expected value (resp. variance) of the deconvolved. Given any flutter shutter function α(t) the last one gives
the spectral SNR of both methods. Provided that a flutter shutter function α(t) is implementable on both kinds
of flutter shutter the spectral SNR of the analog flutter shutter is lower than the spectral SNR of the numerical
flutter shutter (see Thm. 2.1).

2 Comparison of a piecewise constant analog flutter shutter with
the numerical flutter shutter

The question arises of whether it is better to apply an analog flutter shutter, or the equivalent numerical
flutter shutter with exactly the same code 0 ≤ α ≤ 1. (From the technological viewpoint, an analog
flutter shutter could be easily implemented with a classic CCD, and a numerical one with a CMOS).
A first observation in favor of the numerical flutter shutter is given in the next lemma.

Lemma 2.1. The variance of the analog flutter shutter observation (IV.3) is larger or equal to the
variance of the numerical flutter shutter observation, (III.8), with equality when ∀ k αk = 0 or 1.

Proof. Since 0 ≤ α(t) ≤ 1 (because it is a proportion of incoming photons allowed to travel through
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IV.2 Comparison of a piecewise constant analog flutter shutter with the numerical
flutter shutter

the sensor) we have α( tv ) ≥ α2( tv ). Hence (α
(
.
v

)
∗ u)(x) ≥ (α2 ( .

v

)
∗ u)(x) (because u ≥ 0). Using

(IV.3) and (III.8) concludes the proof.

Since the expected value of (IV.2) is equal to the expected value of the numerical flutter shutter
(see Thm. III.7) the inverse filter is equal to the inverse filter of the numerical flutter shutter (III.11).
The next result is a decider for the numerical flutter shutter (when it is possible to implement it with
the same code as an analog flutter shutter, meaning that α is piecewise constant.)

Theorem 2.2. Let 0 ≤ α ≤ 1 be a piecewise constant code function for the analog flutter shutter.
Then the spectral SNR of the analog flutter shutter method is smaller or equal to the spectral SNR
of the numerical flutter shutter with the same code.

Proof. The analog flutter shutter method has a spectral SNR equal to

SNR(F(uest,ana)(ξ)) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L1

,

and the spectral SNR of the numerical flutter shutter is

SNR(F(uest,num)(ξ)) = 1[−π,π](ξ)
|û(ξ)||α̂(ξv)|√
||u||L1 ||α||L2

.

A comparison of both formulas shows that the announced inequality amounts to prove that
√∫

α ≥√∫
α2, which boils down to

∫
α ≥

∫
α2. This last inequality follows immediately from 0 ≤ α ≤ 1.

This result also implies that the variance of the estimated landscape (IV.4) using an analog flutter
shutter method var(F(uest,ana)) is larger or equal to var(F(uest,num)) (III.16) using a numerical flutter
shutter method when α is positive and piecewise constant.
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Chapter V

Examples of Flutter Shutter

This chapter explores the standard camera apparatus as a particular flutter shutter strategy. The SNR
of the deconvolved image is calculated, for any standard acquisition strategy. The standard camera is
optimized to get the best SNR possible, taking the deconvolution into account. It is proven that given
the relative velocity v, the best snapshot consists in the use of an exposure time ∆t such that the blur
support is |v|∆t ≈ 1.0909 (pixel). This can be termed as the “snapshot” theory. This snapshot theory
provides a reference to compare all flutter shutters and the standard camera in terms of SNR. It
is proven that the Levin et al. motion-invariant photography method is a particular case of analog
flutter shutter. Furthermore, it is proven that the motion-invariant photography apparatus is indeed
invertible and a formula providing its SNR is given. This chapter also proposes to implement the
motion-invariant photography kernel using a numerical flutter shutter. This permits to generalize the
motion-invariant photography method to the case where the direction of the relative velocity v is not a
priori known. The chapter ends with a summary of all usual flutter shutter strategies and their impact
on the SNR of the recovered sharp image.

1 Snapshots

The goal of this section is to provide a thorough definition and analysis of the classic flutterless
photography. The above results shall be used in the sequel to compare the flutter shutter with classic
cameras. Uniform motion blurs using a standard camera have been studied nicely, for example in [12].

The acquired image at position x for a short snapshot is (a realization of)

Pl([0,∆t]× [x− 1
2 , x+ 1

2]) ∼ P

(∫ ∆t

0
u(x− vt)dt

)
∼ P

(∫ v∆t

0

1
v
u(x− t)dt

)

∼ P

(1
v

(1[0,v∆t] ∗ u)(x)
)
∼ obs(x) (V.1)

where (V.1) is known only for x ∈ Z. In short, a snapshot is nothing but a flutter shutter (analog or
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Chapter V. Examples of Flutter Shutter

numerical) with code α(t) = 1[0,∆t](t). Thus

F(1
v
α

(
.

v

)
) = 2

sin( ξv∆t
2 )

vξ
e−iξ

v∆t
2 . (V.2)

From (V.2) we see that we must have |v|∆t < 2 to guarantee the invertibility of the blur kernel on
[−π, π].

Definition Given v, we call “standard snapshot” the use of an integration time (∆t) such that
|v|∆t < 2. We call snapshot samples at position n of the landscape u at velocity v the random
variables

obs(n) ∼ P

(1
v

(1[0,v∆t] ∗ u)(n)dt
)
.

We call band limited interpolated snapshot its band limited interpolate (II.5)

obs(x) ∼
∑
n∈Z

obs(n)sinc(x− n).

By definition of the standard snapshot, ∆t is small enough so (V.2) has no zero on [−π, π] (the support
of û). Thus (V.1, V.2) lead to the definition of the inverse filter γ satisfying

û(ξ) = γ̂(ξ)F(E(obs))(ξ)

implying

γ̂(ξ) =
v1[−π,π](ξ)

2 sin( ξv∆t
2 )

ξ e−iξ
v∆t

2

. (V.3)

The following definition and estimation of variance and SNR are direct applications of the same
quantities for the numerical (or analog) flutter shutter :

Definition We call estimated landscape uest,sna of the standard snapshot the function defined by

F(uest,sna)(ξ) = γ̂(ξ)
∑
n∈Z

obs(n)e−inξ1[−π,π](ξ). (V.4)

Theorem 1.1. For a standard snapshot using an exposure time of ∆t the spectral SNR (II.8) is

SNR(ξ) = 1[−π,π](ξ)|û(ξ)|
√

∆t
||u||L1

∣∣∣∣∣2sin( ξv∆t
2 )

ξv∆t

∣∣∣∣∣ ;

38



V.1 Snapshots

the expected value of the estimated landscape F(uest,sna)(ξ) from the observed samples is

E(F(uest,sna)(ξ))) = û(ξ)1[−π,π](ξ); (V.5)

and the variance is

var(F(uest,sna(ξ))) =
||u||L11[−π,π](ξ)

∆t
∣∣∣∣2 sin( ξv∆t

2 )
ξv∆t

∣∣∣∣2 . (V.6)

Proof. Since α(t) = 1[0,∆t], ‖α‖2L2 = ∆t and α̂(ξ) = 2 sin( ∆tξ
2 )

ξ e−i
∆tξ

2 , these formulas are direct applica-
tions of Theorem 1.3 (chapter III).

The only remaining question is the computation of the best exposure time ∆t for a known v providing
the best SNR without the use of a flutter shutter.

Theorem 1.2. (Best exposure time for landscape recovery)
Consider a landscape u(x − vt) moving at velocity v. Then for a snapshot the SNRspectral−averaged

(II.9) is maximized when |v|∆t∗ ≈ 1.0909 pixel and is equal to

SNRspectral−averaged =

√
∆t∗
2π
∫ π
−π |û(ξ)|dξ√√√√||u||L1
∫ π
−π

dξ∣∣∣∣ sin( ξv∆t∗
2 )

ξv∆t∗
2

∣∣∣∣2
≈ 0.1359√

|v|

∫ π
−π |û(ξ)|dξ√
||u||L1

.

Proof. From (V.6) the energy (variance of the noise) to be minimized in order to guarantee the best
SNRspectral−averaged after deconvolution is

E(∆t) = 1
∆t

∫ π

−π

dξ∣∣∣∣2 sin(ξ v∆t
2 )

ξv∆t

∣∣∣∣2 = v2∆t
4

∫ π

−π

ξ2

sin2(ξ v∆t
2 )

dξ.

Then

E′(∆t) = v2

4

(∫ π

−π

ξ2

sin2(ξ v∆t
2 )

dξ + ∆t
∫ π

−π

−ξ3vcos(ξ v∆t
2 )

sin3(ξ v∆t
2 )

dξ

)

= v2

4

∫ π

−π

ξ2
(
sin(ξ v∆t

2 )− ξv∆tcos(ξ v∆t
2 )
)

sin3(ξ v∆t
2 )

dξ.
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Chapter V. Examples of Flutter Shutter

This derivative vanishes when b∗ = v∆t∗ ≈ 1.0909 pixel (see Fig. A.1). Then (II.9, V.5, V.6) entail

SNRspectral−averaged =

√
1

2π
∫ π
−π |û(ξ)|dξ√√√√√ ||u||L1

∆t∗
∫ π
−π

dξ∣∣∣∣ sin( ξv∆t∗
2 )

ξv∆t∗
2

∣∣∣∣2
=

√
∆t∗
2π
∫ π
−π |û(ξ)|dξ√√√√||u||L1
∫ π
−π

dξ∣∣∣∣ sin( ξv∆t∗
2 )

ξv∆t∗
2

∣∣∣∣2

≈

√
1.0909

2πv
∫ π
−π |û(ξ)|dξ√√√√||u||L1

∫ π
−π

dξ∣∣∣∣ sin( 1.0909ξ
2 )

1.0909ξ
2

∣∣∣∣2
≈ 0.1359√

v

∫ π
−π |û(ξ)|dξ√
||u||L1

.

This means that, using a standard camera, the best SNRspectral−averaged of the recovered image
is achieved by a finite blur whose support is of approximatively ≈ 1.0909 pixel. The use of a bigger
exposure time can give a better SNR before deconvolution, but this advantage is lost by the deconvo-
lution. The previous also applies to “time delay and integration” devices (commonly used in satellite
as a SNR booster) where the number of stages defines the time exposure.

Definition (Best snapshot.)
Given a landscape u(x−vt) moving at velocity v, we call best snapshot strategy the use of the exposure
time ∆t∗ ≈ 1.0909

|v| .

The practical validity of this definition is illustrated on Fig. A.2 where, the RMSE is calculated of
example tests varying the exposure time. Notice that since the estimator is unbiased, minimizing the
variance is equivalent to minimizing the RMSE of the deconvolved image, by the same arguments
developed in Chap. II section 4. As predicted by the theory on average on the example tests the best
blur support is of approximately 1.0909 pixel. From Thm. 1.1 we get that the actual value of the
RMSE is a function of u, v and ∆t, explaining the different curves observed.
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Figure A.1 – This figure shows the square root of the energy E(∆t) of Thm. 1.2. The energy E(∆t) measures the
variance of the Poisson noise after deconvolution, for any snapshot, in function of the exposure time ∆t. Since our
estimator is unbiased, minimizing the variance is equivalent to minimizing the RMSE of the deconvolved image, by
the same arguments developed in Chap. II section 4. Therefore, we ought to minimize E(∆t) in order to guarantee
the best SNRspectral−averaged, and the smallest RMSE taking the deconvolution into account: x-axis blur (|v|∆t)
in pixel, y-axis the standard deviation of the noise taking the deconvolution into consideration. The minimum is
reached for a blur of approximately 1.0909 pixel. Without loss of generality, by the arguments developed in the
proof of Thm. 1.2, the curve has been drawn for v = 1.
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Figure A.2 – This figure shows the RMSE curves for different snapshots kinds, on five test images (House, Alley,
Boat, Cameraman, Peppers). On the x−axis, the blur support (|v|∆t) in pixels, on the y−axis the corresponding
RMSE. Notice that, some of these curves are so close to each other that they superimpose. Without loss of
generality, by the arguments developed in the proof of Thm. 1.2, the comparison is made with a fixed v = 1. From
the proof of Thm. 1.2 we get that the best snapshot only depends on the blur support |v|∆t. However, from Thm.
1.1 for a fixed landscape u we get that the value of this SNR is a function of the two variables ∆t and v∆t. This
is no surprise looking at (V.1). Furthermore, since our estimator is unbiased, minimizing the variance is equivalent
to minimizing the RMSE of the deconvolved image, by the same arguments developed in Chap. II section 4.
Therefore, the curves confirm that, on average on multiple images, the blur support for a standard camera should
be of approximatively ∆t∗ = 1.0909 pixel. Moreover, from Thm. 1.2 we get that for a fixed v and ∆t the value of
the RMSE depends on the landscape u, explaining the differences between curves. Theses curves also show that
our SNR definition is indeed proportional to the RMSE of the deconvolved image. A larger support would lead
to a better SNR on the observed image samples, but the deconvolution would entail a lower SNR (and a bigger
RMSE) on the deconvolved image. The best snapshot is a compromise between the number of photons caught
during a time span ∆t and the deconvolution kernel. It gives a reference to compare all flutter shutter strategies in
terms of SNR.
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V.2 Motion-invariant photography

2 Motion-invariant photography

We shall prove that the motion-invariant photography method proposed in [69, 70] is equivalent to an
analog flutter shutter method using a specific flutter shutter function. Thus, we are able to compute
its SNR and compare it with the other flutter shutter methods. This fact comes as a surprise, the
gain in a flutter shutter being controlled, while with the motion-invariant photography method the
shutter remains fully open during the whole aperture time. Thus, its gain remains constant and equal
to one on the normal time scale. Nevertheless, a time renormalization gives a variable gain. The
motion-invariant photography apparatus consists in moving the camera at a constant acceleration in
the direction of v while the landscape is moving at a constant velocity v. Thus, to use the motion-
invariant photography method the direction of v must be known a priori. Furthermore, this means
that the apparent relative velocity (between the camera and the landscape) is v(t) = −at − v. The
motion-invariant photography was discovered by searching among all camera motions one providing
the same kernel for all velocities v of the landscape. With the formalism proposed in the former
chapters the observed value of the motion-invariant photography using a finite aperture time T on the
centered time interval [−T2 , T2 ] is a realization of

obs(x) ∼ P

(∫ T
2

−T
2

u(x− a

2 t
2 − v.t)dt

)
(V.7)

∼ P

(∫ T
2

−T
2

u

(
x− a

2(t+ v

a
)2 + v2

2a

)
dt

)
∼ P

(∫ T
2 + v

a

−T
2 + v

a

u

(
x− a

2 t
2 + v2

2a

)
dt

)

∼ P

(∫ 0

−T
2 + v

a

u

(
x− a

2 t
2 + v2

2a

)
dt+

∫ T
2 + v

a

0
u

(
x− a

2 t
2 + v2

2a

)
dt

)

∼ P

(
−
∫ 0

T
2 −

v
a

u

(
x− a

2 t
2 + v2

2a

)
dt+

∫ T
2 + v

a

0
u

(
x− a

2 t
2 + v2

2a

)
dt

)

∼ P

(∫ T
2 −

v
a

0
u

(
x− a

2 t
2 + v2

2a

)
dt+

∫ T
2 + v

a

0
u

(
x− a

2 t
2 + v2

2a

)
dt

)
which does not depends of the sign of va (as the two integrals switch)

∼ P

(∫ T
2 −|

v
a
|

0
u

(
x− a

2 t
2 + v2

2a

)
dt+

∫ T
2 +| v

a
|

0
u

(
x− a

2 t
2 + v2

2a

)
dt

)

∼ P

(∫ T
2 +| v

a
|

T
2 −|

v
a
|
u

(
x− a

2 t
2 + v2

2a

)
dt+ 2

∫ T
2 −|

v
a
|

0
u

(
x− a

2 t
2 + v2

2a

)
dt

)
assuming a long enough exposure time such that T

2 − |
v
a | ≥ 0

∼ P
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. (V.8)

The denominator of B is arbitrarily close to 0. Thus, αMIP (t) can become larger than one. This
means that, in general, it could not be realized stricto sensu by an analog flutter shutter, where the
relative motion v of landscape and camera would be uniform. Fortunately, the above formula shows
that the motion-invariant photography apparatus is mathematically equivalent to an analog flutter
shutter and can be analyzed in terms of SNR like any other flutter shutter. It is not a numerical
flutter shutter, since the flutter shutter function modifies directly the intensity of the Poisson random
variables. This means that the observed samples of the motion-invariant photography are always
Poisson random variables. The claim raised in [69, 70] that the method is motion invariant comes
from the fact that the kernel only depends of | va |. Thus, if |a| is large enough, the relative variations
of | va | toward v are small. Under that assumption the kernel αMIP (t) is indeed nearly invariant with
respect to the velocity v. Notice that when T → +∞, the “A” part of αMIP (t) tends to 0, since
a(T2 − |

v
a |)

2 → sign(a)∞.

Theorem 2.1. The motion-invariant photography using a finite aperture time T is equivalent to an
analog flutter shutter with a flutter function equal to

αMIP (t) =
1]a(T2 −|

v
a
|)2− v2

2a ,a(T2 +| v
a
|)2− v2

2a [(t)
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2a)
+
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2a ,a(T2 −|
v
a
|)2− v2

2a [(t)√
a(t+ v2

2a)
.

Proof. This is a direct consequence of (V.7)-(V.8) and chapter IV.

The question arises of whether or not the kernel

αMIP (t) =
1]a(T2 −|

v
a
|)2− v2

2a ,a(T2 +| v
a
|)2− v2

2a [(t)

2
√
a(t+ v2

2a)
+
1]− v2

2a ,a(T2 −|
v
a
|)2− v2

2a [(t)√
a(t+ v2

2a)

is indeed invertible for all band-limited functions whose Fourier transform lies on [−π, π]. This finite
aperture scheme is a technically feasible approximation of the ideal motion-invariant photography
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V.2 Motion-invariant photography

using an infinite aperture time with an accelerating camera. Let the aperture time T → +∞,

then provided a > 0, αMIP (t) →
1

]− v2
2a ,+∞[

(t)√
a(t+ v2

2a )
in L1

loc and in the tempered distribution sense.

Thus, skipping the time translation, we get the ideal motion-invariant photography “flutter” func-
tion αMIP−ideal(t) := 1]0,+∞[(t)√

at
. In order to analyze the bounds of the motion-invariant photography,

its Fourier transform α̂MIP−ideal(ξ) =
∫+∞

0
1√
at
e−itξdt is computed in Annex 1. Note that when

a < 0, αMIP (t) →
1

]− v2
2a ,−∞[

(t)√
a(t+ v2

2a )
whose Fourier transform is α̂MIP−ideal(−ξ). Thus asymptotically the

choice of the direction of the acceleration has no influence on the invertibility of the motion-invariant
photography.

Lemma 2.2. (Invertibility of the motion-invariant photography method.)
Using a large enough aperture time the motion-invariant photography kernel is invertible, whatever the
sign of a.

Proof. Indeed, when T → +∞, αMIP → αMIP−ideal = 1]0,+∞[(t)√
at

where α̂MIP−ideal = 1√
|aξ|

e−i
π
4 sign(ξ)

(see annex 1), which does not depends on the sign of a. These calculations are valid up to an irrelevant
multiplicative constant factor for the numerical flutter shutter, dropping also the time translation.
Thus the convergence of αMIP to αMIP−ideal is true in the tempered distribution sense. It follows
that also α̂MIP tends to α̂MIP−ideal in the tempered distribution sense, and the limit indeed does not
vanish.

Lemma 2.3. (Efficiency of the ideal motion-invariant photography method.)
When T → +∞ the ideal motion-invariant photography method has a spectral SNR

SNRspectral(ξ) =


|û(0)|√
||u||L1

∞ at ξ = 0

0 elsewhere.

In consequence, the average SNR is zero: SNRspectral−averaged = 0.

Proof. We have, when T → ∞, αMIP → αMIP−ideal thus at ξ = 0 α̂MIP−ideal(0) = ||αMIP−ideal||L1

since αMIP−ideal(t) ≥ 0, which proves, by Thm. 1.2, that SNRspectral(0) = limx→∞
x√
x
|û(0)|√
||u||L1

=
|û(0)|√
||u||L1

∞. Let now ξ 6= 0. Then

var(F(uest,ana(ξ))) = ||αMIP−ideal||L1 ||u||L1

1
|aξ|

1[−π,π](ξ) = |aξ|||αMIP−ideal||L1 ||u||L11[−π,π](ξ) =∞

(since ||αMIP−ideal||L1 = ∞, and |α̂MIP−ideal(ξ)| < ∞ ). This entails, again by Thm. 1.2, that
SNRspectral(ξ) = 0. The last result comes from the fact that the variance is infinite on a set [−π, π] \
{0}, thus SNRspectral−averaged = 0.
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Lemma 2.3 means that the motion-invariant photography behaves like a standard camera using
an infinite time exposure : only the null frequency is preserved. Indeed an invertible kernel does not
guarantee a good SNR after deconvolution (except on the unreal case where the acquired samples are
noiseless). A convolution against a kernel α(t) having a small but non zero |α̂(ξ)| on the support of û(ξ)
(for example a Gaussian with a large standard deviation) would lead to the same result. The motion-
invariant photography is therefore a perfect example of the flutter shutter paradox (Cor. 1.6 chapter
VI). To sense many more photons does not necessarily imply a better SNR after deconvolution. The
authors of [69] wrote as a drawback of the flutter shutter that it was losing half the photons while
the motion-invariant photography kept them all: “(about the Agrawal et al. flutter shutter) ...the
amount of recorded light is halved. Because of the loss of light, the vertical budget is reduced from
2T to T for each ωx”. The number of acquired photons can be arbitrarily large using a flutter shutter
or a motion-invariant photography apparatus. Nevertheless the SNR of the image obtained after
deconvolution is lower than the SNR (see chapter VIII) of the best snapshot acquiring little photons
(comparatively) and despite the fact that the snapshot “spends energy outside the slope wedge and
thus does not make a full usage of the vertical k̂ωx budget” [69]. We now turn to practical aspects of the
motion-invariant photography. For obvious practical reasons it is not possible to accelerate infinitely
the camera. Thus α̂MIP , using a finite aperture time, is nonetheless an approximation of α̂MIP−ideal.
It may seem surprising, at first sight, that the finite aperture approximation has a better SNR than
the ideal one. This comes from the fact that, for a finite time aperture, αMIP belongs to L1(R). Its
Fourier transform may have zeros but, for finite and large enough T ’s they are outside [−π, π], the
support of û. This fact is illustrated below, where the value SNRspectral−averaged is given for a variety
of choices for a and T . To compare, on an equal footing, all flutter shutters and the motion-invariant

| va | = 1 | va | = 10−1 | va | = 10−2 | va | = 10−3 | va | = 10−4

T = 1 0.6233 0.4538 0.1743 0.1451 0.0550
T = 10 0.0812 0.1080 0.0338 0.0157 0.0017
T = 100 6.8270.10−2 8.9420.10−3 3.9406.10−4 2.9002.10−4 4.7470.10−6

T = 1000 4.4610.10−3 6.0796.10−4 4.6485.10−5 6.9466.10−6 1.3826.10−6

T = 10000 1.7162.10−4 3.9338.10−6 7.3618.10−8 1.3089.10−9 2.4434.10−11

Table A.1 – This table provides the relative SNRspectral−averaged compared to the best snapshot. A number
greater than one means an increase of the SNR, less than one a loss. This fact illustrates the asymptotic result
on the motion-invariant photography (lemma 2.3) : the bigger T is the worse the results become (the noisier the
deconvolved is).

photography we propose to find a piecewise constant flutter shutter code approximating αMIP−ideal,
using the framework of Thm. 2.1. This permits to override a drawback of the method. Indeed, a flutter
shutter implementation will work without the a priori knowledge of the direction of the velocity v of
the landscape. It is a bit clumsy to directly approximate αMIP , since it already is an approximation
of the ideal αMIP−ideal motion-invariant photography function and would result inevitably in a lower
SNR (an therefore an unfair comparison). To do so, we remark that α̂MIP−ideal does not belong
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V.2 Motion-invariant photography

to L1(R) nor to L2(R) and to avoid this pitfall we change it for α̂MIP−ideal(ξ)1[−π|v|,π|v|](ξ). Indeed
frequencies outside the interval [−π|v|, π|v|] are of no interest for our scope since u is band limited on
[−π, π], the expected value of the observation being E (obs(n)) =

(
1
vα
(
.
v

)
∗ u
)

(n) (see Thm. 1.1).
This change does not ensure that α̂MIP−ideal(ξ)1[−π|v|,π|v|](ξ) belongs to L2(R). Nevertheless we

can at least compute its Fourier expansion (as the Fourier expansion of an L1(R) function). Now, we
are in position to apply Thm. 2.1 (with α̂MIP−ideal = 1√

|aξ|
e−i

π
4 sign(ξ)

1[−π|v|,π|v|](ξ)) and to compute
the code. Being Hermitian this function provides a real code (i.e. coming from a real function in
the space domain). The only loss incurred in applying Thm. 2.1 with a function that does not
belong to L2(R) is the goodness of the convergence, which is reduced to a tempered distribution
convergence. Nonetheless, by the localization principle and Riemann-Lebesgue theorem, we also have
at the very least a pointwise convergence everywhere, except in 0, of the Fourier expansion. Thus, it
is no surprise that the proposed numerical approximation (which is a trigonometric polynomial, thus
C∞(R)) works well and is indeed invertible for all band limited functions such that û is supported
on [−π, π]. The obtained code (w.l.o.g for v = 1 and ∆t = 1) and its Fourier transform are shown
Fig. A.3, and will be compared advantageously to the Agrawal et al. code later on (chapter VIII).
The proposed implementation of motion-invariant photography using a numerical flutter shutter, is
simpler from a technical point of view, since it does not require to control the camera motion itself.
This permits to compute SNR’s for any finite code and compare the motion-invariant photography
like any other flutter shutter set up. The above formalism, paradoxes, and comparison also applies
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Figure A.3 – Left: the flutter shutter gain function for the motion-invariant photography code (w.l.o.g. for
v = 1), x− axis : k, y− axis : the gain αk. On the right: the Fourier transform (modulus) of the motion-invariant
photography code (in bold) and of the ideal motion-invariant photography function α̂MIP−ideal (dashed dots line
style). As predicted the proposed approximation does not vanish on [−π, π]. Thus the convolution of a band-limited
function by the motion-invariant photography code is invertible, x− axis : frequency ξ, y − axis : |α̂(ξ)|.

to the “Motion blur removal with orthogonal parabolic exposures” [25], a recent extension of the
motion-invariant photography using two images, namely two orthogonal motion invariant apparatus.
Indeed it is equivalent to the use of two flutter shutters and, in that case, a fair comparison shall
also involve the acquisition of two flutter shutter images. Surprisingly, the numerical flutter shutter
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permits to approximate this ideal function with a finitely supported flutter shutter function (that is, a
finite code) while avoiding an unrealistic infinite acceleration. It also permits to get rid of the exigence
of an a priori knowledge of the direction of v. In consequence, like any other flutter shutter the coded-
motion-invariant photography will work for any direction of v. Finally, it increases the efficiency of
the method compared to the classic one involving an accelerating camera. Indeed it permits to control
the Fourier transform and to concentrate it easily on the support of û(ξ) i.e. where the information
is (contrarily to α̂mip−ideal which is supported on the whole R). Predictive results are shown in Tab.
A.2 and simulations in chapter VIII.
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Chapter VI

The Flutter Shutter Paradox

This chapter proves that the best aperture strategy is indeed a flutter shutter, not a single aperture.
It is proven that given the relative velocity v the strategy guaranteeing the best SNR of any flutter
shutter comes from the Fourier series coefficients of a (zoomed) sinc function. This means that the
best flutter shutter is not realizable by an analog flutter shutter apparatus. It is proven that the SNR
of the recovered sharp image remains finite, regardless of the aperture time. It is proven that the
flutter shutter does always beat the standard camera, even though the aperture time remains the same.
Compared to the best snapshot the best numerical flutter shutter camera increases the SNR by 17%.

Theorem 1.4. (Ideal flutter shutter function)
Consider a landscape u(x − vt) moving at velocity v. Then an optimal continuous numerical flutter
shutter gain function maximizing the average spectral SNR (II.9) is equal to α∗(t) = sinc(tv).

Proof. Among all gain control functions α(t) one giving the best SNRspectral−averaged (II.9) is given
by minimizing the averaged variance of ûest (III.16),

F (α) = ||α||22
1

2π

∫ π

−π

dξ

|α̂(vξ)|2 (dropping the irrelevant constants, u being fixed))

≥ ||α||22
1

1
2π
∫ π
−π |α̂(vξ)|2dξ

,

where the inequality is Jensen’s inequality applied to the strictly convex function x > 0 7→ 1
x . Be-

cause of this strict convexity, the equality occurs when |α̂(ξ)|2 ≡ 1 on [−πv, πv], up to an irrelevant
multiplicative constant for a numerical flutter shutter (see chapter III Lemma 1.3). Thus, an optimal
numerical flutter shutter function is α∗(t) = sinc(tv) (up to a normalization constant).

Notice that the proposed optimal flutter shutter function has a constant Fourier transform on the
support of û for any velocity |ṽ| ≤ |v|. This means that this flutter shutter code is “self-deconvolving”.
Being non positive this ideal gain control function is not implementable using an analog flutter shutter,
and being non piecewise-constant is not directly implementable using a numerical flutter shutter strat-
egy. However a piecewise constant approximation can be used in a numerical flutter shutter strategy
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Chapter VI. The Flutter Shutter Paradox

with Thm. 2.1 (chapter III) as soon as |v|∆t ≤ 1, and it is enough to let ∆t→ 0 to approximate the
optimal flutter shutter.

Corollary 1.5. (Upper bound on the SNR)
Consider a landscape u(x−vt) moving at velocity v. The ideal numerical flutter shutter strategy using
α∗(t) = sinc(tv∆t) has a spectral SNR (II.8) equal to

SNRspectral(ξ) =
1[−π,π](ξ)√

v

|û(ξ)|√
||u||L1

.

Moreover the averaged spectral SNR (II.9) is equal to

SNRspectral−averaged = 1
2π
√
v

∫ π
−π |û(ξ)|dξ√
||u||L1

.

Proof. By Thm. 1.4, an optimal flutter shutter strategy satisfies |α̂∗(ξ)| = 1[−πv,πv]. Using Parseval’s
formula we deduce that ||α∗||2L2 = v. Then from chapter III Thm. 1.3 we deduce that SNRspectral(ξ) =
1[−π,π](ξ)√

v
|û(ξ)|√
||u||L1

. It follows that SNRspectral−averaged = 1
2π
√
v

∫ π
−π |û(ξ)|dξ√
||u||L1

.

Corollary 1.6. (The flutter shutter paradox)
The use of a flutter shutter strategy increasing the total exposure time does not permit to achieve an
arbitrary SNR. Consider a landscape u(x − vt) moving at velocity v. Then the SNRspectral−average

of any flutter shutter strategy is bounded independently of the total exposure time. In other words
increasing the exposure time has a limited effect on the SNR.

Proof. This is a direct consequence of Cor. 1.5. Indeed, the exposure time is the (infinite) length of
the support of α∗, but the SNR of the restored image is nevertheless finite.

Moreover, SNR(analog flutter) ≤ SNR(numerical flutter) for any analog flutter shutter func-
tion and SNR(numerical flutter) ≤ SNR(best numerical flutter) <∞ by Cor. 1.5. Thus,

SNR(analog flutter) ≤ SNR(numerical flutter) ≤ SNR(best numerical flutter) <∞;

implying that the SNR of any analog flutter shutter is bounded as well (and smaller or equal to the
numerical flutter shutter).

Corollary 1.7. (Efficiency of the numerical flutter shutter)
Consider a landscape u(x − vt) moving at velocity v. Then the ratio R of SNRspectral−average be-
tween the ideal flutter shutter and the best snapshot with exposure time equal to ∆t∗ is equal to
R = SNRspectral−average(flutter,ideal)

SNRspectral−average(snapshot) ≈
1

2π
0.1359 ≈ 1.171.

Proof. This is a direct consequence of Thm. 1.2 (chapter V) and Cor. 1.5.
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This result is surprising and disappointing. The gain of the most flexible flutter shutter that could
be envisaged, a numerical flutter shutter with a continuous gain function, is insignificant with respect
to the best classic snapshot. Nevertheless, even if the aperture time is the same, a numerical flutter
shutter beats slightly the standard snapshot:

Corollary 1.8. (Deconvolution gain) For a landscape u(x− vt) moving at velocity v, consider its
best classic snapshot with exposure time equal to ∆t∗ and the truncated flutter shutter strategy using
α = α∗1[−∆t∗

2 ,∆t2 ]. Then the spectral SNR, SNRspectral−average is larger for this restricted flutter
shutter than for the best snapshot. The ratio of the SNRs is approximately 1.04.

Proof. This is a mere numerical estimation using Thms. 1.2 (chapter V) and 1.4 (chapter VI).

In short, the amount of collected photons is not larger, but they are better combined. The
resulting flutter shutter kernel is slightly better than the snapshot kernel. These positive and negative
results constitute what we shall call the flutter shutter paradoxes. If the velocity of the observed object
is known, none of the flutter shutter strategies beats significantly the optimal standard snapshot
adapted to this velocity. Nevertheless, the flutter shutter strategy is always (slightly) better.

The tabular Tab. A.1 summarizes the results on the various flutter shutter strategies explored,
focusing on the resulting SNR.

flutter type flutter function α(t) (av., spectral) SNR
Accumulation 1[0,T [(t), v = 0 (spatial)

√
u(x)T

Best snapshot 1[0, 1.0909
v

[(t) (av.) ≈ 0.1359√
|v|

∫ π
−π |û(ξ)|dξ√
||u||L1

Analog discrete
∑L−1
k=0 αk1[k∆t,(k+1)∆t[(t), αk ∈ [0, 1] 1[−π,π](ξ)

|α̂(ξv)|
||α||L1

|û(ξ)|√
||u||L1

Analog continuous α(t) ≥ 0 Idem
Numerical

∑L−1
k=0 αk1[k∆t,(k+1)∆t[(t), αk ∈ R 1[−π,π](ξ)

|α̂(ξv)|
||α||L2

|û(ξ)|√
||u||L1

M.I.P. (numerical) (approximating code) Idem

Best numerical sinc(tv) (av.) 1
2π
√
|v|

∫ π
−π |û(ξ)dξ|√
||u||L1

Table A.1 – This table summarizes the results on the different flutter shutter strategies and their SNR. On the
first column the types of flutter are indicated. The second and last row give the optimal flutter shutter function in
two categories: the best simple snapshot, and the best numerical flutter shutter. The best numerical flutter shutter
is a sinc and has a finite SNR in spite of using an infinite exposure time. This is the flutter shutter paradox of Cor.
1.6. M.I.P. stands for motion-invariant photography. The second column shows the form of the α function. Agrawal
et al. code is analog discrete, with αk ∈ {0, 1}. The last column gives the SNR’s of each method in its more
adequate presentation: the first line shows that the accumulation is the best strategy, the only one able to increase
indefinitely the SNR. The second and last lines compare the average spectral SNR’s for the best snapshot and
the best numerical flutter shutter (av. stands for average). The SNR gain with the numerical flutter shutter with
respect to the best snapshot is only approximately 1.171. The spectral SNR formulas for the analog and numerical
flutter shutter are similar but distinct. The analog involves the L1 norm of α and the numerical the L2 norm.
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Flutter shutter strategy SNRspectral−averaged

Best snapshot 1
Agrawal et al. flutter shutter (code) 0.5636

(v = 1 ∆t = 1)
Ideal motion-invariant photography 0

(infinite time exposure)
Motion-invariant photography 0.6233

(at | va | = 1 and T = 1)
Ideal flutter shutter (sinc) 1.17
(infinite time exposure)

Table A.2 – This table provides the relative SNRspectral−averaged of all standard flutter shutter strategies
compared to the best snapshot. A number greater than one means an increase of the SNR, less than one a loss.
All recent methods does have a good SNR on the acquired image (because the support of their flutter shutter
function is big and the number of photons caught much higher compared to the snapshot), but it is all lost by the
deconvolution if the kernel is not well chosen. Those results are coherent with the numerical simulations of chapter
VIII.
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Chapter VII

A Stochastic Solution to the Flutter Shutter
Paradox

This chapter sets a better mouse trap to override the flutter shutter paradox of Cor. 1.6 chapter
VI and increase the efficiency beyond the 17% bound, by assuming that the observed objects adopt a
known (or learned) random velocity distribution. This set up is best suited to analyze and optimize
the case of multiple objects and/or velocities in the observed scene. Analytical formulas are proposed
that link an optimal flutter shutter code with the probability densities of the expected velocities. Not
only this theory permits to formalize the design of optimized codes given a random velocity model.
Conversely, it allows us to analyze a posteriori any existing flutter shutter strategy, and to perform
a reverse engineering of existing patented codes. This theory also applies to standard cameras and
permits to compute the best snapshot given any velocity probability density.

When the motion is perfectly known then the best flutter shutter function is a sinc as proved
in chapter VI Thm. 1.4. However as stated in chapter VI Cor. 1.7 the use of this sinc function
is not a breakthrough compared to the best snapshot since the SNR is increased by small factor.
Nevertheless, if the motion is not well-known then without some flutter shutter method the only way
to ensure a sharp image for a broad range of velocities v is to use a very small exposure time leading
to a poor SNR. It is then possible to achieve better results on average, and to ensure anyway always
a sharp image. To optimize the SNR gain, however, we must know the probability distribution of the
velocities. Fixing the norm of the code and maximizing its DFT (discrete Fourier transform) as done
in [4, 6, 55] does not lead to optimal codes in a strong sense.

1 From motion to codes

Let ρ(v) be a probability density for v ∈ R (which is equivalent to a probability density over the blur
length), such that ρ(v) = 0, ∀|v| > vmax. Notice that without the knowledge of the maximum speed
vmax it is virtually impossible to guarantee |v|∆t < 2 (see chapter III section 1.3) for v in the whole
support of ρ. We assume that the probability density ρ has been estimated during a calibration phase,
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Chapter VII. A Stochastic Solution to the Flutter Shutter Paradox

(e.g.) by taking sample snapshots without flutter shutter, and using them to compute the actual blur
density function by tracking zeros in the image DFT. In this section we address the question of finding
the best flutter function (the best code) α, yielding an average minimal noise for the restored image.
The noise level is measured by the variance of the restored image. Thus we look for a flutter shutter
code maximizing SNRspectral−average, which amounts by (III.16) to minimize

∫ ||α||2L2 ||u||L11[−π,π](ξ)
|α̂(ξv)|2 dξ.

Thus, dropping the multiplicative constants we propose the following energy to be minimized for a
fixed v,

Ev(α̂) = ||α̂||22
∫
1[−π|v|,π|v|](ξ)dξ
|v| |α̂|2(ξ) .

As stated previously if v is known the optimization of Ev is easy. For ρ(v) = δv0 the best code is
not a snapshot. The optimal flutter shutter for fixed v maintains a white noise after deconvolution.
This is achieved with a sinc code whose spectral support is uniform over [−π|v|, π|v|]. Now, when v
is a random variable whose probability density is known, the question is to find again the optimal αk
coefficients. There are several obvious possible causes for a variable velocity:

1. When the scene is not planar, the speed of objects will change according to their distance;

2. When the camera shakes or moves (with non-constant and or unknown amplitudes);

3. In Agrawal’s examples, the background is static, the observed vehicles move.

Given ρ(v) the α function leading to the best possible SNR on average is given by minimizing

E(α̂) =
∫
R

Ev(α̂)ρ(v)dv =
∫
R

||α̂||22
∫ ∞
−∞

1[−π|v|,π|v|](ξ)dξ
|v||α̂|2(ξ) ρ(v)dv

= ||α̂||22
∫ ∞
−∞

1
|α̂|2(ξ)

(∫
R

ρ(v)1[−|v|π,|v|π](ξ)
|v|

dv

)
dξ, (VII.1)

where we used the Fubini theorem. Then from (VII.1) defining

w(ξ) :=
∫
R

ρ(v)1[−|v|π,|v|π](ξ)
|v|

dv, (VII.2)

this minimization boils down to minimizing the functional

E(α̂) = ||α̂||22
∫ ∞
−∞

w(ξ)
|α̂|2(ξ)dξ. (VII.3)
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VII.1 From motion to codes

Notice that w(ξ) = 0 for |ξ| ≥ |vmax|π, and that
∫
R

|w(ξ)|dξ =
∫
R

2|v|πρ(v)
|v|

dv = 2π.

Thus w is in L1(R) and is compactly supported, so that 4
√
w ∈ L1 ∩ L2(R).

Theorem 1.1. The optimal functions α∗ minimizing E(α̂) satisfy |α̂∗| = 4
√
w on the support of w. If

we extend α̂∗ by zero outside this support, we obtain bounded continuous codes belonging to L2(R).

Proof. We choose as unknown function f(ξ) := |α|2(ξ). To simplify expressions we omit the ξ integra-
tion variable in the integrals which are all on R. We have by (VII.3), E(f) = (

∫
f)
∫ w(ξ)
f(ξ) dξ. Thus its

weak differential in the direction of every bounded perturbation g which has compact support in the
support of f satisfies

E′(f)(g) = (
∫
g)
∫
w

f
− (
∫
f)
∫

w

f2 g.

A minimal f therefore satisfies for every bounded g with support contained in the support of f ,
E′(f)(g) = 0 which yields ∫

g

[
(
∫
w

f
)− (

∫
f) w
f2

]
= 0

and therefore f = C
√
w on the support of w. Being nonnegative this solution is admissible and we

deduce |α̂(ξ)| = 4
√
w on the support of w, as announced. It remains to show that when extended by

zero out the support, this is our solution. To this aim, we notice that the minimization of E(f) is
equivalent to minimizing the strictly convex functional F (f) :=

∫ w(ξ)
f(ξ) under the constraints

∫
f = 1,

f ≥ 0, f = 0 outside the support of w. The solution to this problem, if it exists, is therefore unique.
Thus, it remains to show that f := w

1
2∫
w

1
2

is our solution. This is an easy consequence of Cauchy-

Schwartz inequality. Indeed, for every f that is positive on the support of w,

∫
w

1
2 =

∫
w

1
2

f
1
2
f

1
2 ≤

(∫
w

f

) 1
2
(∫

f

) 1
2
.

Nevertheless, this calculation only fixes the modulus of α̂. Since w is symmetric with respect to
the origin, so is |α̂| and there are therefore many optimal real flutter shutter functions α.

The only thing left is, given L, to compute the coefficients αk, k ∈ {0, ..., L − 1} to approximate the
above solution.

Corollary 1.2. (Computation of the αk coefficients)
Let ρ(v)1[−|vmax|,|vmax|](v) be a compactly supported probability density on the velocities v and ∆t
be such that |vmax|∆t ≤ 1. Then the (piecewise constant) flutter shutter function defined by α(t) =∑
N
αk1[k∆t,(k+1)∆t[(t) with αk = 1

2π
∫ π|vmax|∆t
−π|vmax|∆t

4
√
w( s

∆t )cos(
2(k+1)s)

2
sinc( s

2π ) ds is the best quadratic approximation
of the ideal flutter shutter function namely F−1( 4

√
w)(t).
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Chapter VII. A Stochastic Solution to the Flutter Shutter Paradox

Proof. The goal is here to construct α(t) a piecewise constant function such that (from Thm. III.7)
: α̂(ξv) = 4

√
w(ξv) for ∀ξ ∈ 1[−π,π] and v ∈ support(ρ). Thus we can apply Thm. 2.1 (with |vmax|

instead of |v| and β = 4
√
w). Now,

αk = 1
2π

∫ π|vmax|∆t

−π|vmax|∆t

4
√
w( s

∆t)

sinc( s
2π )e

−is
2
eiksds = 1

2π

∫ π|vmax|∆t

−π|vmax|∆t

4
√
w( s

∆t)
sinc( s

2π ) e
i(2k+1)

2 ds

= 1
2π

∫ π|vmax|∆t

−π|vmax|∆t

4
√
w( s

∆t)cos(
2(k+1)s)

2 s)
sinc( s

2π ) ds since w is symmetric with respect to zero.

This concludes the proof.

As wished the ak coefficients of the optimized flutter shutter code are real but not necessarily
positive (nor the ideal flutter shutter function F−1( 4

√
w)(t)) implying that the code is not usable with

an analog flutter shutter camera. Nevertheless in practice the use of a finite number ak does not
guarantee that α̂(ξ) 6= 0 for ξ ∈ [−π|vmax|∆t, π|vmax|∆t].

2 From codes to motion

By the formulas of the preceding section, given a code (α0, ..., αL−1) ∈ RL, we are now able to estimate
its underlying velocity probability distribution.

Theorem 2.1. Let α(t) be a flutter shutter function. Then, it is optimal with respect to some velocity
probability distribution ρ(v) if and only if the function ξ ∈ R+ → |α̂(ξ)| is non increasing. Moreover,
if ξ ∈ R+ → |α̂(ξ)| is non increasing then ρ(v) = −1

2vw
′(πv), v 6= 0.

Proof. We first establish how the function ρ(v) can be deduced from the function w (and therefore
eventually from α). We first notice that given w, if there is an associated function ρ, it can be assumed
even. Indeed, if it is not, (VII.2) is still true when replacing ρ by its symmetrized ρ(v)+ρ(−v)

2 . Thus we
can look for an even ρ and simplify (VII.2) into

w(ξ) = 2
∫ +∞

0

ρ(v)1[−vπ,vπ](ξ)
v

dv = w(−ξ)

Thus, for ξ 6= 0 we shall have

w′(ξ) = sign(ξ)w′(|ξ|) = 2sign(ξ)
(∫ +∞

0

ρ(v)1[−vπ,vπ](|ξ|)
v

dv

)′

= 2sign(ξ)
(∫ +∞

|ξ|
π

ρ(v)
v
dv

)′
= −2sign(ξ)

(∫ |ξ|
π

+∞

ρ(v)
v
dv

)′

= −2sign(ξ)
ρ( |ξ|π )
|ξ|
π

= −2
ρ( |ξ|π )
ξ
π

.
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VII.3 Best snapshot on average

Hence, we have w′(πξ) = −2ρ(ξ)
ξ If follows that ρ(v) is entirely determined by

ρ(v) = −1
2vw

′(πv), for v 6= 0. (VII.4)

This formula has two uses. First, if ξ ∈ R+ → w′(ξ) = (|α̂|4)′(ξ) is positive on a set with positive
measure, then ρ cannot be a probability density. Thus, the considered code is not optimal for any
velocity distribution if |α̂| is increasing somewhere. If instead |α̂| is nonincreasing on R+, (VII.4) gives
the direct algorithm calculating ρ detailed in Algorithm 1.

input : a flutter shutter code (αk)k∈{0,··· ,L−1}, ∆t the time step of the flutter shutter
output: underlying probability density ρ for which the code is optimal

1. compute α̂(ξ) (= ∆tsinc( ξ∆t2π )e−iξ∆t
∑L−1
k=0 αke

−ikξ∆t, see Table A.1)

2. compute w the weight (VII.2) function by w̃(ξ) = |α̂(ξ)|4

3. compute ρ(v) = −1
2vw

′(πv), v 6= 0

Algorithm 1: Computing the velocity distribution associated with a given code.

Remark As we shall see most classic codes do not strictly satisfy the conditions of Theorem 2.1.
Fortunately, the measure of the set where for these codes |α̂| is increasing is small, and this occurs on
intervals where α̂ is also small. Thus, we can apply Algorithm 1 by modifying only slightly α (or w)
by replacing (VII.4) by

ρ(v) = −1
2vw

′(πv)1−vw′(πv)≥0, for v 6= 0. (VII.5)

This algorithm will be applied in chapter VIII section 2 to several classic patented codes to give their
underlying ρ(v).

3 Best snapshot on average

The goal of this subsection is to define an optimized snapshot using the framework of section 1. Again,
provided ρ(v) a probability density on v we shall minimize (from section V Thm. 1.2)

E(∆t) =
∫ ∫ π

−π

ξ2

sin2( ξv∆t
2 )

v2∆t
4 ρ(v)dξdv

which yields to

E′(∆t) =
∫ ∫ π

−π

v2

4
ξ2
(
sin( ξv∆t

2 )− ξv∆tcos( ξv∆t
2 )

)
sin3( ξv∆t

2 )
ρ(v)dξdv.
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Chapter VII. A Stochastic Solution to the Flutter Shutter Paradox

Notice that ∆t ≤ 2
|vmax| . The zero of E′(∆) is computed numerically.

Theorem 3.1. (Blurs on average invariance)
Given s > 0 and ρs(v) = sρ(vs) a family of probability densities which comes from a compactly
supported mother function ρ(v)1[−|vmax|,|vmax|](v), the optimal snapshot on average using the ∆t∗ as-
sociated to ρs(v) then the best blur on average, namely s∆t∗ remains constant.

Proof. Let ∆t∗ be such that

E(∆t∗) =
∫ ∫ π

−π

ξ2

sin2( ξv∆t
2 )

v2∆t
4 ρ(v)dξdv

is minimal and consider

Es(∆t) =
∫ ∫ π

−π

ξ2

sin2( ξv∆t
2 )

v2∆t
4 ρs(v)dξdv = s

∫ ∫ π

−π

ξ2

sin2( ξv∆t
2 )

v2∆t
4 ρ(vs)dξdv

=
∫ ∫ π

−π

ξ2

sin2( ξv2
∆t
s )

v2∆t
s2 ρ(v)dξdv = 1

s

∫ ∫ π

−π

ξ2

sin2( ξv2
∆t
s )

v2∆t
s

ρ(v)dξdv = 1
s
E(∆t

s
).

Thus Es(∆t) is minimized for ∆t
s = ∆t∗.

Corollary 3.2. The best blur on average remains constant to (approximatively) 1.44 for uniformly
distributed velocities and constant to (approximatively) 1.96 for truncated Gaussian distributed veloc-
ities.

Proof. Immediate since ρs(v) = s1[−1
2 , 12 ](vs) or ρs(v) = s1[−4,4](vs)e

−(vs)2
2 (up to an irrelevant constant

factor for the optimization of E).

Definition (Best snapshot on average.)
Given a moving landscape u(x − vt) moving at velocity v with a probability of density ρ(v),
we call best snapshot on average the use of the exposure time ∆t∗ minimizing E(∆t) =∫ ∫ π
−π

ξ2

sin2( ξv∆t
2 )

v2∆t
4 ρ(v)dξdv, the variance of the noise on average. When ρ(v) is uniform over

[−|vmax|, |vmax|] then ∆t∗|vmax| is constant (∆t∗|vmax| ≈ 1.44). Similarly when ρ(v) is a truncated

Gaussian, (ie up to a constant renormalization, ρ(v) = 1[−4σ,4σ]e
−v2
2σ2 ) then ∆t∗|vmax| is also constant

(∆t∗|vmax| ≈ 1.96).

Those results means that for a standard camera, assuming a uniform or a truncated Gaussian motion
model the exposure time should be tuned such that the blur length never exceed the ∆t∗vmax constant
dependent of the motion model (see Fig. A.1).

Theorem 3.3. (Scale invariance of the ideal Fourier transform of the flutter shutter
functions)
Given s > 0 and ρs(v) = sρ(vs) a family of probability densities which comes from a compactly
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Figure A.1 – The energies E -proportional to the deviation of the noise (on average)- for different snapshots:
x-axis maximum blur (vmax∆t) in pixel, y-axis the value of E. Top: for a uniform motion model on the velocities.
The minimum is reached for a maximum blur of approximately 1.44 pixel. Bottom : for a truncated Gaussian
motion model on the velocities. The minimum is reached for a maximum blur of approximately 1.96 pixel. It is
worth to take more risk, as the probability of higher velocities is much smaller for the Gaussian model. As previously
done, the cure is shown for vmax = 1 w.l.o.g.
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Chapter VII. A Stochastic Solution to the Flutter Shutter Paradox

supported mother function ρ(v)1[−|vmax|,|vmax|(v), the optimal snapshot on average using the ∆t∗

associated, a fixed exposure time factor c and a code length L then the ideal Fourier transform of the
flutter function 4

√
w(ξ) (with ∆t = C∆t∗

L ) is independent of the parameter s.

Proof. From (VII.2) we have

w(ξ) =
∫
ρs(v)
|v|

1[−|v|∆tπ,|v|∆tπ](ξ)dv = s

∫
ρ(v)
|v|

1[−|v|∆t
s
π,|v|∆t

s
π](ξ)dv.

Then Thm. 3.1 entails that ∆t
s = ∆t∗ at the optimum, and numerical flutter shutter functions are

defined up to a constant multiplication (see chapter III section 1.3). This result means that there is
much less ideal function that could be expected at first sight (and thus less codes).

Corollary 3.4. The ideal Fourier transform of the flutter shutter function remains constant for uni-
formly distributed velocities and truncated Gaussian distributed velocities.

Proof. Immediate since ρs(v) = s1[−1
2 , 12 ](vs) or ρs(v) = s1[−4,4](vs)e

−(vs)2
2 (up to an irrelevant constant

factor for w).

Those results means that assuming a uniform or a truncated Gaussian motion model, a fixed code
length L and an exposure time factor compared to the best snapshot on average there is only one
Fourier transform of the flutter shutter function α̂(ξ) = 4

√
w(ξ) independent of the model parameter

(the range or the std-dev). The function to approximate being constant in this set up; codes shall be
compared varying the exposure time factor.
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Chapter VIII

Numerical Simulations

In this chapter, the first part is dedicated to the simulation of various flutter shutter strategies, where we
compare them in terms of RMSE. The results are coherent with the predictive results using the Fourier
based SNR criterion. The flutter shutter camera simulator simulates the observed samples of flutter
shutter cameras directly from the Poisson photon emission. Then, the reverse engineering of classic
flutter shutter strategies is proposed. The last section is dedicated to the numerical computation and
comparison of optimized flutter shutter codes (see chapter VII) for Gaussian, uniform and a realistic
handcrafted densities of probability ρ(v) on the observed velocities v.

1 All flutter shutters

The purpose of this section is to compare experimentally different acquisition strategies : snapshot,
flutter shutter using the Agrawal et al. code [3], a random uniform over [−1, 1] code, the motion-
invariant photography code (M.I.P, see section chapter V 2) and the sinc code (see section VI Thm.
1.4). All strategies are compared using the RMSE, the contrast invariant RMSE (RMSECI) and
the visual image quality. A benchmark of acquisition strategies is given (Tab. A.1) to illustrate the
flutter shutter paradox of Cor. 1.6 section VI.

Code type: Snapshot Agrawal et al. code Random code M.I.P. code Sinc code
RMSE 1.47 2.54 2.25 2.31 1.46
RMSECI 1.42 2.83 2.49 2.19 1.42

Table A.1 – Quantitative (RMSE, RMSECI) comparison of different strategies for fixed velocity v = 1 (so the
blur support is of 52 pixels, except for the snapshot) on the boat test image. The rand code performs better than
the Agrawal et al. or the Levin et al. M.I.P. code. Indeed the rand code is (on average) closer to the optimum sinc
code. Unsurprisingly, the best RMSE is obtained using the sinc code. But it beats only slightly the snapshot,
as predicted by the flutter shutter paradox of Cor. 1.6 section VI. The Levin et al. motion-invariant photography
and the Agrawal et al. code of flutter shutter are perfects examples of the flutter shutter paradox. More acquired
photons does not necessarily mean a better SNR in the deconvolved image (“a photon can kill another photon!”).
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Chapter VIII. Numerical Simulations

1.1 Algorithm

There exist two different types of flutter shutter depending on whether the gain modification takes
place before (analog flutter shutter) or after the photons hit the sensor (numerical flutter shutter). For
an analog flutter shutter the gain is defined as the proportion of incoming photons that are allowed
to travel to the pixel sensor. Thus only positive (actually in [0, 1]) gains are feasible. The numerical
flutter shutter camera, instead, takes a burst of L images using an exposure time of ∆t . Then the
k− th image is multiplied by a gain α∈R and added to the previous one to obtain the observed image.
Consequently, only one image is stored and transmitted. This implies that the observed value obs(n)
at pixel n is always a Poisson random variable for the analog flutter shutter, but not for the numerical
flutter shutter. In the following the sequence of gains used on the camera is called “flutter shutter
code” and is defined as the vector (αk)k=0,··· ,L−1. Given a code the flutter shutter function is defined
by α(t) = αk for t ∈ [k∆t, (k + 1)∆t[, α(t) = 0 otherwise.

1.2 Short description

The algorithms will be first described in a continuous, and then in a discrete (see section 1.6) frame-
work. Roughly the algorithm consists of four steps: 1) Simulate the ideal noiseless observed image,
2) Simulate Poisson (photonic) noise (see section 1.3) to obtain the observed image 3) Estimate the
landscape by deconvolution 4) Compute the error, namely the Root-Mean-Squared-Error (RMSE)
and a contrast invariant RMSE (see section 1.5). The implementation in C++ is detailed in the
implementation section 1.6. For color images each component is processed independently, the RMSE

is averaged over all components.

The analog flutter shutter

The simulation data are: an image u(x), a code (fluttering sequence or gain) α(t) ≥ 0, a velocity
v, and an SNR level (and using a normalized ∆t = 1). Let û(ξ) =

∫∞
−∞ u(x)e−ixξdx be the Fourier

transform of u. We assume in the following that u is band limited: û(ξ) = 0, ∀|ξ| > π. The flutter
shutter function

α(t) =
L−1∑
k=0

αk1[k∆t,(k+1)∆t[(t)

is designed so that

α̂(ξv) = ∆t
2sin( ξv∆t

2 )
ξv∆t

L−1∑
k=0

αke
iξv∆t 2k+1

2 6= 0 ∀ξ ∈ [−π, π],

therefore it is invertible on the support of û(ξ).
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VIII.1 All flutter shutters

1. Compute the ideal noiseless observed pixel value:

at pixel x the ideal noiseless observed pixel value is
(

1
vu ∗ α( .v )

)
(x) computed using

F−1 (û(ξ)α̂(vξ)) (x).

2. Simulate the observed pixel value:

the observed pixel value at pixel x is a Poisson random variable with intensity λ(x) =(
1
vu ∗ α( .v )

)
(x) computed using λ(x) = F−1 (û(ξ)α̂(vξ)) (x) by definition of the analog flutter

shutter. Let o(x) be a realization of Poisson(λ(x)) (see section 1.3 below).

3. Estimate the landscape pixel value by deconvolution:

the estimated landscape from the observed pixel value is then obtained by a deconvolution
filter, uest(ξ) = obs ∗ γ, where γ is the inverse filter satisfying

(
1
vα( .v ) ∗ γ = δ(x)

)
, computed by

ûest(ξ) = ô(ξ)γ̂(ξ) = ô(ξ)
α̂(vξ) .

4. Compute error using RMSE and contrast invariant RMSECI

Straightforward with section 1.5.

A detailed numerical implementation is given in section 1.6.

The numerical flutter shutter

For the numerical flutter shutter, the only difference is that there is no positivity constraint on α(t).
But the simulation algorithm is slightly different:

α(t) =
L−1∑
k=0

αk1[k∆t,(k+1)∆t[(t)

is designed so that

α̂(ξv) = ∆t
2sin( ξv∆t

2 )
ξv∆t

L−1∑
k=0

αke
iξv∆t 2k+1

2 6= 0 ∀ξ ∈ [−π, π],

therefore invertible on the support of û(ξ).

1. Compute the ideal noiseless elementary pixel value:

at pixel x the elementary noiseless pixel value is ek(x) =
(

1
vu ∗ 1[k∆t,(k+1)∆t[( .v )

)
(x) computed

using F−1
(

1
v û(ξ)1̂[k∆t,(k+1)∆t[(ξv)

)
(x).
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2. Compute the simulated observed pixel value

By definition of the numerical flutter shutter, the observed pixel value is realization of the Poisson
mixture obs(x) =

∑L−1
k=0 αkPoisson(ek(x)) (see sections 1.3, 1.4 below).

3. Estimate the landscape pixel value by deconvolution

The estimated landscape from the observed pixel value is then obtained by deconvolution
uest(ξ) = o ∗ γ, where γ is the inverse filter satisfying

(
1
vα( .v ) ∗ γ = δ(x)

)
, computed by

ûest(ξ) = ô(ξ)γ̂(ξ) = ô(ξ)
α̂(vξ) .

4. Compute error using RMSE and contrast invariant RMSECI

Straightforward with section 1.5.

A detailed numerical implementation is available in section 1.6.

1.3 Simulation of a Poisson random variable X with intensity λ

The usual algorithm is [62]:

• If (λ ≤ 50) then

– Let g = exp(−λ); em = −1; t = 1; boolean rejected = true;

– While (rejected) do

1. em = em+ 1;

2. t = t.rand; (where rand is a uniform on [0, 1] random generator)

3. If (t <= g) then : X = em; rejected = true; endif;

– endwhile;

• Else : simulate a Gaussian random variable X with mean and variance equal to λ (Box & Muller
[13] used here), and round it.

1.4 Signal to Noise Ratio selection

The goal is to find a renormalization factor λ2 such that the random variable X defined by X ∼
1
λ2Poisson(λ2u(x)) has a SNR(X) = k when u(x) = 100. It corresponds to tuning an averaged
number of photons for a medium brightness value (100). If λ2 = k2

100 then SNR(X) = k.
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VIII.1 All flutter shutters

1.5 Contrast invariant RMSE

In many cases reconstruction errors inherent to a method can be quantified using the Root-Mean-

Squared-Error RMSE (u, uest) :=
√∫

D
|u(x)−uest(x)|2dx
measure(D) . However, when a small contrast change occurs

between the original and the processed image, the RMSE can become substantial, while the images
remain perceptually indistinguishable. For example take an image u(m,n) defined over a sub-domain
D ⊂ Z2, and another one uest = u + 10. Then RMSE(u, uest) = 10 is large but does not reflect
the quality of the reconstruction uest. Comparatively, a convolution with for example a Gaussian can
give a smaller RMSE while making considerable damage. This bias is avoided by normalizing the
images before computing the RMSE. The principle of the normalization is that two images related
to each other by a contrast change are perceptually equivalent. Their distance should reflect this fact
and be zero. The midway equalization [29] is best suited for that purpose, because it equalizes the
image histogram to a “midway” histogram depending on both images. By the midway operation both
images undergo a minimal distortion and adopt exactly the same histogram. Thus we shall define the
contrast invariant RMSE (RMSECI) by

RMSECI = RMSE(uestmid(u,uest) , umid(u,uest))

where mid(u, uest)(= mid(uest, u)) is the midway histogram between [u and uest. umid(u,uest) is the
image u specified on the mid(u, uest) histogram (having an histogram equal to mid(u, uest)) and
uestmid(u,uest) is uest specified on mid(uest, u).

1.6 Implementation

The described algorithm has been implemented in C++, the code (resp. its documenta-
tion) are available at https://edit.ipol.im/edit/algo/mrt_flutter_shutter/srcflutter_1.

tar.gz(resp. https://edit.ipol.im/edit/algo/mrt_flutter_shutter/srcdocflutter.tar.gz).
Given an image u(m,n) defined for m ∈ {1, · · · ,M} and n ∈ {1, · · · , L}, a code (αk)k=0,··· ,L−1, a
velocity v, and an SNR level (and using a normalized ∆t = 1), the analog flutter shutter camera and
its restoration process are simulated as described below. For color images each component is processed
independently, the RMSE is averaged over all components. Assuming without loss of generality that
the blur is in direction of the image lines, the following algorithm is repeated for each component.

1.7 Analog flutter shutter

1. Step 1:
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(a) compute ũ(m,n) the 2D −DFT of u: for m = −M
2 , · · · ,

M
2 − 1 and n = −N

2 , · · · ,
N
2 − 1:

ũ(m,n) = 1
MN

M−1∑
k=0

N−1∑
l=0

u(k, l)ω−kmM ω−nlN

where ωN = exp
(

2iπ
N

)
.

(b) Compute the motion kernel generated by the flutter shutter as

i. for each m = −M
2 , · · · ,

M
2 − 1;

ii. for each n = −N
2 , · · · ,

N
2 − 1;

iii. a(m,n) = ∆t sin(πv∆tn
N

)
πv∆tn
N

∑L−1
k=0 αke

−i( 2πv∆tn
N

)(k+0.5);

(c) compute the product of ũ(m,n) and a(m,n);

(d) compute the inverse DFT of the previous, store it in e(m,n);
(here e(m,n) is a coefficient of the ideal noiseless image observed, up to the periodization
effect.)

(e) crop the result to avoid the periodization effect.

2. Step 2: for each (m,n) simulate the Poisson random variable with intensity e(m,n) and the
desired SNR using sections 1.3, 1.4, store it in o(m,n).

(Here o(m,n) contains a simulation of the observed image.)

3. Step 3:

(a) use classic mirror symmetry among the columns obtain us(m,n);

(b) compute the 2D −DFT of us;

(c) compute the motion kernel like in Step 2;

(d) divide the 2D −DFT of us by the motion kernel;

(e) compute the inverse 2D −DFT of the previous;

(f) crop to remove the mirror symmetry;
(here the last operation gives a simulation of the restored knowing o(m,n) and the code.)

4. Step 4: compute the RMSE and RMSECI after cropping to avoid border effects.

1.8 Numerical flutter shutter

1. Step 1:

(a) compute ũ(m,n) the 2D −DFT of u: for m = −M
2 , · · · ,

M
2 − 1 and n = −N

2 , · · · ,
N
2 − 1:

ũ(m,n) = 1
MN

∑M−1
k=0

∑N−1
l=0 u(k, l)ω−kmM ω−nlN where ωN = exp

(
2iπ
N

)
;
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(b) compute the elementary noiseless observations ek(m,n);

i. for each m = −M
2 , · · · ,

M
2 − 1;

ii. for each n = −N
2 , · · · ,

N
2 − 1;

iii. ck(m,n) = ∆t sin(πv∆tn
N

)
πv∆tn
N

e−i(
2πv∆tn
N

)(k+0.5);

(c) compute the product of ũ(m,n) and ck(m,n);

(d) compute the inverse 2D −DFT of the previous, store it in ek(m,n);
(here ek(m,n) contains the ideal noiseless observed up to the periodization effect.)

(e) crop the result to avoid periodization effect.

2. Step 2:

(a) for each (m,n) simulate the Poisson random variable with intensity ek(m,n) and the desired
SNR using section 1.3, 1.4, store it in ok(m,n);

(b) for each (m,n) the observed o(m,n) =
∑L−1
k=0 αkek(m,n);

(here o(m,n) contains a simulation of the observed image.)

3. Steps 3-4: identical to the analog flutter shutter.

1.9 Usual codes

For comparison purposes the length L of all codes is 52 like in [3, 6, 98, 99]. These strategies are:
1) Snapshot 2) Accumulation 3) Agrawal et al. 4) rand code 5) Sinc code. The first two codes are
standard shutter strategies in classic cameras corresponding to the use of the (1,0,...,0) code (resp.
(1,...,1) code).

Agrawal et al. code is ( 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1) published in [3] (p7) and patented
[99].

The rand code is ( 0.5491, -0.4903, -0.6919, -0.5125, -0.9079, 0.3560, -0.6357, 0.0275, 0.9568,
0.8670, 0.4087, 0.4097, 0.8659, 0.3344, 0.9198, -0.8389, 0.7476, 0.9808, 0.1366, -0.7247, 0.9320, 0.8069,
-0.5848, 0.9493, -0.1682, 0.9533, -0.2173, -0.5834, 0.7483, 0.4785, 0.2266, 0.9764, -0.4708, 0.6723,
0.8312, 0.0084, 0.6892, -0.5245, -0.8651, 0.3417, 0.5183, 0.1317, -0.1301, 0.3432, -0.3262, 0.4367,
-0.9771, -0.2120, 0.1160, 0.6648, 0.9446, 0.0590 ) generated from a uniform distribution over [−1, 1].

The M.I.P. (in the sequel M.I.P. stands for motion-invariant photography code is ( -0.0072629,
0.0075565, -0.0078763, 0.0082229, -0.0086028, 0.0090181, -0.0094769, 0.0099834, -0.010549, 0.01118,
-0.011893, 0.012702, -0.01363, 0.014703, -0.015961, 0.017451, -0.01925, 0.021458, -0.024239, 0.027842,

67



Chapter VIII. Numerical Simulations

5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

Figure A.1 – The flutter shutter gain function for a snapshot (left). The Fourier transform (modulus) of a
snapshot (right).

-0.032697, 0.03958, -0.050083, 0.067993, -0.10493, 0.21912,1, 0.29949, 0.40839, 0.22649, 0.29058,
0.18999, 0.23588, 0.16715, 0.20305, 0.15111, 0.18066, 0.13904, 0.16419, 0.12953, 0.15143, 0.12177,
0.14119, 0.11529, 0.13274, 0.10976, 0.12561, 0.10498, 0.11949, 0.10078, 0.11418, 0.097058). This is the
best L2 approximation of the ideal motion-invariant photography function function. More precisely,
given v, it is a discretization of the αMIP−ideal(t) = 1]0,∞[(t)√

t
function with cutoff frequency equal to

πv (given here for |v|=1).

The sinc code is ( 0.0002, -0.0002, 0.0002, -0.0003, 0.0003, -0.0003, 0.0003, -0.0004, 0.0004,
-0.0005 , 0.0005 , -0.0006 , 0.0007 , -0.0008 , 0.0009 , -0.0011 , 0.0014 , -0.0017, 0.0021 , -0.0027 ,
0.0037, -0.0053 , 0.0082, -0.0141, 0.0296, -0.0917, 1.0000, -0.0917, 0.0296 , -0.0141 , 0.0082 , -0.0053,
0.0037 , -0.0027, 0.0021 , -0.0017, 0.0014 , -0.0011 , 0.0009 , -0.0008 , 0.0007 , -0.0006 , 0.0005 ,
-0.0005, 0.0004, -0.0004 , 0.0003 , -0.0003 , 0.0003, -0.0003 , 0.0002 , -0.0002).

This is the best L2 approximation of the ideal gain function. More precisely, given v, it is a
discretization of the sinc(x) = sin(πx)

πx function with cutoff frequency equal to πv (given here for |v|=1).

The next figures display the codes on the left, and on the right their Fourier transforms (modulus).
From top to bottom: the snapshot (Fig. A.1), the standard blur (Fig. A.2), Agrawal et al. code (Fig.
A.3), the rand code (Fig. A.4) and the optimal sinc code (Fig. A.6). Notice that being non positive
the (ideal) sinc code cannot be used with an analog flutter shutter camera.

1.10 Experiments

Different strategies are here compared on the two following images using the numerical flutter shutter,
which gives a better SNR than an analog flutter shutter. Without loss of generality all results are
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VIII.1 All flutter shutters

Figure A.2 – The flutter shutter gain function for the accumulation (left). The Fourier transform (modulus) of
the accumulation (right), invertible only when Lv∆t < 2.
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Figure A.3 – The binary flutter shutter gain function for the optimized Agrawal et al. code (left). The Fourier
transform (modulus) of the Agrawal et al. code (right).

Figure A.4 – The flutter shutter gain function function for the rand code (left). The Fourier transform (modulus)
of the rand code (right). We shall see in the sequel that despite the lack of optimization this code performs better
than the Agrawal et al. code.
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Figure A.5 – The flutter shutter gain function for a the M.I.P. (motion-invariant photography) code (left). On the
right: the Fourier transforms (modulus) of the motion-invariant photography code (in bold) and of the ideal motion-
invariant photography function α̂MIP−ideal (dash dots line style). As predicted the proposed approximation is close
to the optimum. As it is stated in [69] this apparatus performs better than the Agrawal et al. code. However, it may
be noticed that the both the ideal motion-invariant photography function and its piecewise constant approximation
are far from the ideal flutter shutter function coming from a sinc (see A.6). Thus, the SNR of the recovered image
is small compared to the best snapshot (see 1.10). This fact shall not surprise the reader, the constant acceleration
apparatus was found by searching the best strategy among camera motions. Thus, the degrees of freedom of the
motion-invariant photography are smaller than the numerical flutter shutter.

Figure A.6 – The flutter shutter gain function for the sinc-code (left). The Fourier transform (modulus) of the
sinc− code (right), approximating the Fourier transform of the ideal gain function.
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VIII.1 All flutter shutters

Figure A.7 – The boat test image (left). The house test image (right)

given here for a normalized velocity v = 1 and a SNR equal to 100 for the grey-level 100. On the
boat image on the left of Fig. A.7 are applied successively: a snapshot (Fig. A.8), a classic motion
blur (Fig. A.9), Agrawal et al. code (Fig. A.10), a rand code (Fig. A.11), the motion-invariant
photography code (Fig. A.12), and the optimal numerical sinc code (Fig. A.13).

On the house image on the right of Fig. A.7 are applied successively: a snapshot (Fig. A.14),
a classic motion blur (Fig. A.15), Agrawal et al. code (Fig. A.16), a rand code (Fig. A.17), and
the motion-invariant photography code (Fig. A.18), and the optimal numerical flutter sinc code (Fig.
A.19).
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Figure A.8 – Snapshot : observed image (left). The blur interval length is equal to 1 pixel here. Reconstructed
image (RMSE = 1.47) (middle). Residual noise (difference between ground truth and reconstructed, dynamic
normalized on [0, 255] by an affine contrast change).

Figure A.9 – Accumulation : observed image (left). The blur interval length is equal to 52 pixels here. Recon-
structed image (middle). Residual noise (difference between ground truth and reconstructed, dynamic normalized
on [0, 255] by an affine contrast change).
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Figure A.10 – Agrawal et al. code : observed image (left). The blur interval length is equal to 52 pixels here.
Reconstructed image (RMSE = 2.54) (middle). Residual noise (difference between ground truth and reconstructed,
dynamic normalized on [0, 255] by an affine contrast change).

Figure A.11 – Rand code : observed image (left). The blur interval length is equal to 52 pixels here. Re-
constructed image (RMSE = 2.25) (middle). Residual noise (difference between ground truth and reconstructed,
dynamic normalized on [0, 255] by an affine contrast change).
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Figure A.12 – M.I.P. code : observed image (left). The blur interval length is equal to 52 pixels here. Re-
constructed image (RMSE = 2.31) (middle). Residual noise (difference between ground truth and reconstructed,
dynamic normalized on [0, 255] by an affine contrast change).

Figure A.13 – Sinc code : observed image (left). The blur interval length is equal to 52 pixels here. Reconstructed
image (RMSE = 1.46) (middle). Residual noise (difference between ground truth and reconstructed, dynamic
normalized on [0, 255] by an affine contrast change). The acquired image is “sharp”, it is no surprise since the
sinc-code has a nearly constant Fourier transform thus, it does not alter any frequency.
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Figure A.14 – Snapshot : observed image (left). The blur interval length is equal to 1 pixel here. Reconstructed
image (RMSE = 1.34) (middle). Residual noise (difference between ground truth and reconstructed, dynamic
normalized on [0, 255] by an affine contrast change).

Figure A.15 – Accumulation : observed image (left). The blur interval length is equal to 52 pixels here. Recon-
structed image (middle). Residual noise (difference between ground truth and reconstructed, dynamic normalized
on [0, 255] by an affine contrast change).
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Figure A.16 – Agrawal et al. code : observed image (left). The blur interval length is equal to 52 pixels here.
Reconstructed image (RMSE = 2.34) (middle). Residual noise (difference between ground truth and reconstructed,
dynamic normalized on [0, 255] by an affine contrast change).

Figure A.17 – Rand code : observed image (left). The blur interval length is equal to 52 pixels here. Re-
constructed image (RMSE = 2.01) (middle). Residual noise (difference between ground truth and reconstructed,
dynamic normalized on [0, 255] by an affine contrast change).

76



VIII.2 A reverse engineering of classic flutter shutter codes

Figure A.18 – M.I.P. code : observed image (left). The blur interval length is equal to 52 pixels here. Re-
constructed image (RMSE = 2.11) (middle). Residual noise (difference between ground truth and reconstructed,
dynamic normalized on [0, 255] by an affine contrast change).

2 A reverse engineering of classic flutter shutter codes

Applying Algorithm 1 (page 57) with the variant given by (VII.5), to the Agrawal et al. code gives
(using a normalized ∆t = 1) the probability density of Fig A.21. This distribution can be understood
in two different ways. It either means that there is a high probability that the scene is still and then
otherwise uniformly distributed motions occur on a certain interval of velocities. But this is an unlikely
model for a camera motion. Instead, it is a quite natural model given the kind of motions considered
in the Agrawal et al. codes. Indeed the velocity histogram of Fig A.21 considers that there is a fixed
background with a large area and then some moving objects whose velocity probability distribution is
indeed close to uniform in a broad interval. All proposed codes [3, 6, 80, 98, 99] are equally optimal
for specific probability densities of velocities. Another example is the the McCloskey code [78], treated
in Fig A.22.

The same scheme can be applied to the standard snapshot code (1, 0, ..., 0) to estimate the under-
lying probability density of Fig A.22.

Notice that we cannot apply such a scheme on αMIP−ideal(ξ). Indeed w(ξ) = |α̂MIP−ideal|4 = 1
x2

thus −1
2xw

′(x) = 2 1
x2 which is not L1(R). This means that the motion-invariant photography does not

comes from a probability density. The same result holds for (the band limited version used to be able
to compute a code) αMIP−ideal(ξ)1[−π|vmax|∆t,π|vmax|∆t](ξ), because 1

x2 is not locally integrable near
zero either. This means that to each code of finite length L will correspond a different probability
density. These densities does not converge to a probability density when L→∞.
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Figure A.19 – Sinc code : observed image (left). The blur interval length is equal to 52 pixels here. Reconstructed
image (RMSE = 1.33) (middle). Residual noise (difference between ground truth and reconstructed, dynamic
normalized on [0, 255] by an affine contrast change). The acquired image is “sharp”, it is no surprise since the
sinc-code has a nearly constant Fourier transform thus, it does not alter any frequency.

Figure A.20 – Image credits: The boat (standard test image). The house http://www.flickr.com/photos/
setaou/2162752903/Hervé Bry, Flickr CC-BY-NC-SA )

78

http://www.flickr.com/photos/setaou/2162752903/
http://www.flickr.com/photos/setaou/2162752903/


VIII.3 Simulations on optimized codes

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−14

−12

−10

−8

−6

−4

−2

0

2

4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Figure A.21 – The probability densities associated with Agrawal et al. codes: x-axis motion (in signed pixels),
y-axis the Log of the probability. On the left: the code published in [3]. On the right: the code published in [6].
It corresponds to an attempt to optimize both the SNR and the PSF estimation. Notice that both probability
densities are nonzero even for large motion blurs.
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Figure A.22 – On the left: the probability density associated with the McCloskey code [78]: x-axis motion
(in signed pixels), y-axis probability. On the right: the probability density of velocities associated with the best
snapshot code, a “1.0909 pixel blur integration”. On the x-axis, the velocities (in signed pixels), on the y-axis the
corresponding probability density. This snapshot is optimized a priori for objects moving at velocity |v|. This
bimodal density is natural for a traffic surveillance camera.

3 Simulations on optimized codes

The goal of this section is to explore numerically several natural models of motion, give the cor-
responding optimized codes and to compare their efficiency to the best snapshot on average. This
corresponds to the comparison on an equal footing of two alternative solutions: the snapshot and the
numerical flutter shutter. Both technical solutions are optimized on average (see chapter VII) given a
model ρ(v) on the velocities. We begin in section 3.1 by providing the algorithm computing optimal
flutter shutter codes. The comparison between the numerical flutter shutter and the snapshot is made
in terms of the ratio R(v) of their SNRspectral−averaged (II.9) as done in Cor. 1.7 (chapter VI). Indeed
from (III.16) and (V.6) we have
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R(v) = SNRspectral−average(flutter)
SNRspectral−average(snapshot) =

√√√√√√√
∫ π
−π

1

∆t∗|2
sin( ξv∆t∗

2 )
ξv∆t∗ |2

dξ

∫ π
−π

||α||2
L2

|α̂(ξv)|2dξ
(VIII.1)

where v is in the support of ρ, ∆t∗ is the exposure time of the best snapshot on average defined in
chapter VII section 3, and ∆t( 6= ∆t∗ in general) is the time-step of the flutter shutter. The average
gain of the flutter shutter in terms of SNR is defined by∫

R(v)ρ(v)dv (VIII.2)

and the associated standard deviation (risk) is√∫
|R(v)−

∫
R(u)ρ(u)du|2ρ(v)dv (VIII.3)

Notice that the parameters of a flutter shutter are: L the length of the code (αk)k∈{0,··· ,L−1}, the
motion model ρ(v), the time step ∆t. The parameter for the best snapshot is only the motion model
ρ(v). The best snapshot provides ∆t∗ the optimal aperture time for a standard camera. To ease the
comparison with the Agrawal et al. code, all experiments are made with L = 52 which is the length
of this code. Three motion models are considered: truncated Gaussian, uniform and an handcrafted
trimodal motion model. The time step of the flutter shutter is chosen such that the total exposure
time of the flutter shutter device L∆t is an integer factor c of ∆t∗, L∆t = c∆t∗. This permits an easy
comparison of the considered flutter shutter with the theoretical potential gain

√
c coming from an

increased time aperture. In the examples thereafter c = 1, C = 2, c = 5 and c = 10. Thus, the flutter
shutter camera integrates five (resp. ten) times longer than the optimal snapshot. In other words the
support of the flutter shutter function α(t) =

∑L−1
k=0 αk1[k∆t,(k+1)∆t](t) is five (resp. ten) times larger

than the support of the snapshot function 1[0,∆t](t).

All the presented codes of Figs. A.23, A.24, A.26, A.27 and A.29 are the best possible choice for
αk such that α(t) with ∆t = c∆t∗

L approximates the ideal α∗(t) (defined in chapter VII Thm. 1.1).
From these results we shall compare the two strategies using a finite exposure time (mandatory to
have a practical solution). We have seen that if the velocity is known, namely ρ(v) = δv, the best
code comes from a zoomed sinc function. Moreover, the best snapshot has an exposure time ∆t
tuned so that |v|∆t ≈ 1.0909 (see chapter V) and the flutter shutter increases the SNR by a 1.17
factor approximately (see chapter VI). Notice that, from chapter VII Thm. 3.3, ceteris paribus a scale
change of the motion model results in a scale change of the w(ξ) function and a zoom of the code.
From chapter VII Thm. 3.1 an equivalent result holds for the best snapshot. Thus, without loss of
generality comparisons can be made on normalized motion models. The weight function w (defined
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in (VII.2)) being concave, one can deduce that the modulus of the Fourier transform of the ideal flutter
shutter function (section VII Thm. 1.1) is also concave. Thus all Fourier transforms of optimized codes
(explicitly given in Figs. A.24, A.27 and A.29) inherit this low-pass behavior -more or less peaked at
the null frequency- depending on the motion model ρ and on c, the exposure time factor assumed for
the optimization.

3.1 Algorithm

The algorithm producing optimal codes and comparisons with the snapshot is first described in a
continuous version in Algorithm 2. It computes integrals, numerical details for integral computation
are given in 3. Roughly the algorithm of the demo consists of six steps, the input parameters are 1)
a motion model ρ (Gaussian N(0, σ) truncated at 4σ, uniform or handcrafted), a code length L, an
exposure time factor c. The exposure time factor permits to set the support of the flutter shutter
function as a multiple of the support of the best snapshot.

Numerical evaluation of an integral by the Simpson method

Let f be the function to integrate on an interval [a, b]. Assume that [a, b] is split in n even subintervals.
The Simpson method consists [16] in the approximation

∫ b

a
f(x)dx ≈ h

3

f(x0) + 2
n
2−1∑
j=1

f(x2j) + 4
n
2∑
j=1

f(x2j−1) + f(xn)


where h = b−a

n and xj = a+jh for j ∈ 0, ·, n− 1 (thus x0 = a and xn = b). This yields to the following
pseudo code given in Algorithm 3, provided a < b, a function f to integrate on the interval [a, b], and
a precision parameter ε.

3.2 Optimal flutter shutter codes

The goal of this section is to explore numerically several natural motion models, to give the corre-
sponding optimized codes and to compare their efficiency to the best snapshot. This corresponds
to the comparison on an equal footing of two alternative solutions: the snapshot and the numerical
flutter shutter.

Optimal codes, Gaussian motion model

The optimal codes for a truncated Gaussian N(0, 1
4) motion model (ρ(v) = 1[−1,1]e

−v2

2( 1
4 )2 ) are explicitly

given on the left side of Fig A.24. The Fourier transforms of the corresponding flutter shutter functions
are given on the right side of Fig A.24. On Fig A.24 between the two plots at the top and the two at
the bottom, the discretization step ∆t of the flutter shutter functions α(t) changes and the support of
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input : motion model ρ (to be chose among a list), code length L, exposure time factor c
output: Text files containing: the code coefficients (ak)k∈{−L2 ,··· ,L2−1}, Fourier transform of α,

ideal Fourier transform w, relative efficiency R(v), relative efficiency on average and
associated risk.

1. compute ∆t∗ the exposure time of the best snapshot on average

∆t∗ = argmin∆t

(∫ ∫ π

−π

ξ2

sin2( ξv∆t
2 )

v2∆t
4 ρ(v)dξdv

)

the minimum is calculated by scanning on values of ∆t ∈ [0.001|vmax|, 1.999|vmax|] at a
precision of 0.001|vmax|. The numerical evaluation of the integral is detailed in Algorithm 3,
the precision parameter is fixed at ε = 0.001. This is implemented in best_snapshot.cpp;

2. compute ∆t = c∆t∗
L , the time step of the flutter shutter ;

3. compute the code coefficients αk = 1
2π
∫ π|vmax|
−π|vmax|

4
√
w(s)cos(2(k+1)s)
sinc( s

2π ) ds for

k ∈ {−round(L2 ), · · · , roudn(L2 )− 1} where w(ξ) :=
∫
R

ρ(v)1[−|v|π,|v|π](ξ)
|v| dv. The numerical

evaluation of the integral is detailed in Algorithm 3, the precision parameter is fixed at
ε = 0.001. Depending on the model this step is implemented in
flutter_optimizer_{motion model name}.cpp files;

4. write the code (ak)k, the (modulus) of the Fourier transform of the flutter shutter gain function
and the ideal Fourier transform 4

√
w(ξ) in the corresponding text files;

5. write the relative efficiency R(v) = SNR(flutter)
SNR(snapshot) =

√√√√√√
∫ π
−π

1

∆t∗|2
sin( ξv∆t∗

2 )
ξv∆t∗ |2

dξ

∫ π
−π

||α||2
L2

|α̂(ξv)|2
dξ

in the appropriate

text file. Integrals are evaluated by Riemann sums on 1000 points. This is implemented in
code_comparison.cpp;

6. write the relative efficiency
∫
R(v)ρ(v)dv on average and the associated risk√∫

|R(v)−
∫
R(u)ρ(u)du|2ρ(v)dv. Integrals are evaluated by Riemann sums on 1000 points.

This is implemented in code_comparison.cpp.

Algorithm 2: Pseudo-code of the algorithm computing optimized code.

the flutter shutter function doubles. The green curves showing 4
√
w(ξ) remain the same as the motion

model ρ is unchanged. Notice that the approximation is slightly better for the larger exposure factor
c = 10 (bigger support of α(t)). Indeed, since w(ξ) is compactly supported, its ideal continuous flutter
shutter has an infinite support.

The Fig A.25 provides the comparison with the snapshot in terms of SNR, for any velocity v in
the support of the motion model ρ(v). On the left side, for an exposure factor c = 5 and on the
right side for c = 10. The red curves show the efficiency R(v) function defined by (VIII.1). The
efficiency function R(v) directly measures the performance of the considered flutter shutter camera
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input : a, b, ε (precision), function f
output: tn the numerical approximation of

∫ b
a f(x)dx

initialization: h← b−a
2 ;

s1← f(a) + f(b);
s2← 0;
s4← f(a+ h);
tn← h s1+4s4

3 ;
zh← 2;
while |ta− tn| ≤ ε|tn| do

ta← tn;
zh← 2zh;
h← h

2 ;
s2← s2 + s4;
s4← 0;
j ← 1;
while j > zh do

s4← s4 + f(a+ jh);
j ← j + 2;

end
tn← h s1+2s2+4s4

3 .
end
output : tn

Algorithm 3: Integral evaluation by the Simpson method.

design in terms of reduction of the RMSE compared to the best snapshot. The dotted blue curve
provides the motion model density ρ(v). The optimization permits to concentrate the gain in SNR
on most probable velocities, while for higher but less likely velocities v the optimized flutter shutter
performs worse than the snapshot. The green line shows the average of R(v) taking the motion model
ρ into account (defined by (VIII.2)). Notice that the optimal asymptotic bound of chapter VI Cor. 1.7
is beaten, by approximately 50%. Table A.3 provides both the relative efficiency (VIII.2) and its
associated risk defined by (VIII.3). It permits to measure “how risky” the optimization on average is.

Exposure time factor 1 2 5 10
Code length L 52 52 52 52

Average gain (VIII.2) 0.9899 1.1737 1.2554 1.2705
Std-dev (VIII.3) 0.0003 0.0062 0.0290 0.0392

Table A.2 – Average gain of the optimized flutter shutter compared to the snapshot, assuming a truncated
Gaussian density for the velocities. As guessed from Fig A.28 the gain is substantial and the increase is approximately
50% higher than the asymptotic 1.17 bound given in chapter VI Cor. 1.7 for the particular case of ρ(v) = δv0 (v).
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Figure A.23 – Codes obtained for a truncated Gaussian velocity density. On the left, top and bottom: the code
αk, using an exposure time 1 and 2 times larger than for the best snapshot. On the right (in red) the modulus of
their corresponding Fourier transform, and the ideal Fourier transform 4

√
w(ξ) (VII.2) in green. The convergence is

quite good, even for small exposure time factors. The exact equality α̂(ξ) = 4
√
w(ξ) requires an infinitely supported

flutter shutter function.
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Figure A.24 – Codes obtained for a truncated Gaussian velocity density. On the left, top and bottom: the code
αk, using an exposure time 5 and 10 times larger than for the best snapshot. On the right (in red) the modulus of
their corresponding Fourier transform, and the ideal Fourier transform 4

√
w(ξ) (VII.2) in green. The convergence is

quite good, even for small exposure time factors. The exact equality α̂(ξ) = 4
√
w(ξ) requires an infinitely supported

flutter shutter function.
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Figure A.25 – In red: the ratio of the SNR R(v) of the optimal flutter shutter (truncated Gaussian motion
model) to the optimal snapshot, following formula (VIII.1) for exposure times 1, 2, 5 and 10. The dotted blue curve
represents the probability density ρ(v) of the considered motion model. In green, its average taking the motion
model ρ(v) into account. Notice that the optimization permits to concentrate the gain on most probable velocities,
as expected. For less likely velocities, the best flutter shutter can perform worse that the snapshot. Nevertheless,
on average the gain is substantial and the optimal bound of chapter VI Cor. 1.7 is beaten.

Optimal codes, uniform motion model

The optimal codes for an uniform U[−1, 1] motion model are explicitly given on the left side of
Fig A.27. The Fourier transforms of the corresponding flutter shutter functions given on the right
side of Fig A.27. On Fig A.27 between the two plots at the top and the two at the bottom, the
discretization step ∆t of the flutter shutter gain function α(t) changes. The green curves showing the
ideal Fourier transform 4

√
w(ξ) remain the same as the motion model ρ is unchanged. Notice that

the approximation is slightly better for the larger exposure factor c = 10 (bigger support of α(t)).
The Fig A.28 provides the comparison with the snapshot in terms of SNR for any velocity v in the
support of the motion model ρ(v). On the left side, for an exposure factor c = 5 and on the right for
c = 10. The red curves show the efficiency R(v) function defined by (VIII.1). The efficiency function
R(v) directly measures the performance of the considered flutter shutter camera design in terms of
reduction of the RMSE compared to the best snapshot.

The dotted blue curve provides the motion model density ρ(v). The green line shows the average
efficiency taking the motion model ρ into account (defined by (VIII.2)). Table A.3 provides both the
relative efficiency (VIII.2) and its associated risk defined by (VIII.3).
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Figure A.26 – Codes αk obtained assuming a uniform density for the velocities. . On the left from top to
bottom: the code αk for a uniform velocity distribution using an exposure time 1 and 2 times larger than for the
best snapshot. On the right the corresponding Fourier transform (modulus) of the code in red and the ideal Fourier
transform 4

√
w(ξ) (VII.2) in green. The convergence is quite good, even for small exposure time factors. The exact

equality α̂(ξ) = 4
√
w(ξ) requires an infinitely supported flutter shutter function.
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Figure A.27 – Codes αk obtained assuming a uniform density for the velocities. . On the left from top to
bottom: the code αk for a uniform velocity distribution using an exposure time 5 and 10 times larger than for the
best snapshot. On the right the corresponding Fourier transform (modulus) of the code in red and the ideal Fourier
transform 4

√
w(ξ) (VII.2) in green. The convergence is quite good, even for small exposure time factors. The exact

equality α̂(ξ) = 4
√
w(ξ) requires an infinitely supported flutter shutter function.
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Figure A.28 – The ratio of SNR’s between the optimized snapshot and the flutter shutter R(v) (VIII.1), in red.
From top left to bottom right for an increased exposure time of 1, 2, 5 and 10. The dotted blue line represents
the probability density ρ(v) of the motion model. In green, its average taking the motion model ρ(v) into account.
Unfortunately the gain remains quite small.

Exposure time factor 1 2 5 10
Code length L 52 52 52 52

Average gain (VIII.2) 1.01162 1.0584 1.0798 1.0846
Std-dev (VIII.3) 0.0015 0.00142 0.0036 0.0036

Table A.3 – Average gain of the optimized flutter shutter compared to the snapshot, assuming a uniform density
for the velocities. For the exposure time factor of 1, the gain comes from a better deconvolution kernel. As could
already be guessed from Fig A.28, this gain is not significant.

Optimal codes, handcrafted motion model

The optimal codes for the trimodal motion model ρ(v) = 0.99δ0(v) + 0.005δ15(v) + 0.005δ−15(v) are
explicitly given on the left side of Fig A.29. This model may seem far fetched but can be relevant for
a camera observing a highway. Notice that the optimal flutter shutter assuming ρ(v) = 0.99δ0(v) +
0.005δ15(v)+0.005δ−15(v) and ρ(v) = 0.99δ0(v)+0.01δ15(v) are equals. The Fourier transforms of the
corresponding flutter shutter functions are given on the right side of Fig A.29. On Fig A.29 between
the two plots at the top and the two at the bottom, the discretization step ∆t of the flutter shutter
function α(t) changes. The green curves showing 4

√
w(ξ) remain the same as the motion model ρ

is unchanged. Notice that the approximation is slightly better for the larger exposure factor c = 10
(bigger support of α(t)). Indeed, since w(ξ) is compactly supported, its ideal continuous flutter shutter
has an infinite support. The Fig A.30 provides the comparison with the snapshot in terms of SNR,
for any velocity v in the support of the motion model ρ(v). On the left side, for an exposure factor
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c = 9 and on the right side for c = 25. The red curves show the efficiency R(v) function defined
by (VIII.1). The efficiency function R(v) directly measures the performance of the considered flutter
shutter camera design in terms of reduction of the RMSE compared to the best snapshot. The blue
dots show the motion model density ρ(v). The optimization permits to concentrate the gain in SNR
on most probable velocities, while for higher but less likely velocities v the optimized flutter shutter
performs worse than the snapshot. The green line shows the average of R(v) taking the motion model
ρ into account (defined by (VIII.2)). Notice that the optimal asymptotic bound of chapter VI Cor. 1.7
is beaten. The gain is comparable to the theoretical gain coming from an increased exposure and a still
landscape (

√
9 and

√
25). Table A.4 provides both the relative efficiency (VIII.2) and its associated

risk defined by (VIII.3). It permits to measure “how risky” the optimization on average is.
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Figure A.29 – Codes obtained assuming a trimodal density for the velocities of the form ρ(v) = 0.99δ0(v) +
0.005δ15(v) + 0.005δ−15(v). On the left from top to bottom: the code for a trimodal velocity distribution measured
(x-axis: k, y-axis: the gain αk) using an increased exposure time factor of 9 and 25. On the right the corresponding
Fourier transform (modulus) of the code in red and the ideal Fourier transform 4

√
w(ξ) (VII.2) in green. These

results permit to visualize the effect of the optimization.

Exposure time factor 9 25
Code length L 52 52

Average gain (VIII.2) 2.7360 3.8404
Std-dev (VIII.3) 0.0437 0.0766

Table A.4 – Average gain of the optimized flutter shutter compared to the snapshot, assuming the handcrafted
density for the velocities. The gain is substantial, compared to the asymptotic 1.17 factor given in chapter VI
Cor. 1.7 for the particular case of ρ(v) = δv0 (v). Notice that in both cases, the gain is close to the theoretical gain
coming from an increase exposure time

√
9 and

√
25.
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Figure A.30 – The ratio of SNR’s between the optimized snapshot and the flutter shutter R(v) (VIII.1),
in red. On the left : an increased exposure time of 9, on the right an increased exposure time of 25. The
blue dots represents the motion model ρ(v) (the Dirac mass. In green, the mean of R(v) (assuming ρ(v) =
0.99δ0(v) + 0.005δ15(v) + 0.005δ−15(v)). Actually this constant emphasizes the effect of the flutter shutter : it is not
only possible to integrate more photons but it is more efficient. As we can see the flutter shutter clearly outperforms
the best snapshot.

4 Estimating the kernel

In a real context to perform the deconvolution we need to estimate v, the (a priori unknown) velocity
of the motion. If the apparatus allows to build simultaneously two images, the problem can be made
easier (by storing a classic motion blur, image without flutter shutter, which will be used to estimate
the blur (by tracking zeros in its Fourier transform for example) and another one with flutter shutter
which is thereafter deconvolved).

The other way is to estimate v from the observed image itself. This is an apparently ill posed
problem, since any observed pattern in the image or in its Fourier transform could come either from
the landscape or from the code. Nevertheless, codes like Agrawal’s, because of the oscillating pattern
of their Fourier transform, leave a distinguishable trace in the Fourier transform of the observed image
(Fig. A.31).

Omitting the noise term, we are observing the landscape u convolved with αv∗(t) = 1
v∗α(t/v∗) for

an unknown v∗. The oscillating pattern of the Fourier transform modulus of the observed image most
likely belongs to the α kernel, and not to the landscape (see Fig. A.31). We shall use this observation
to extract the α kernel. Notice that even for a snapshot an estimation of the blur is needed before
deconvolution, and not easier.

The log-modulus of the observed image is

log(|ôbs(ξ)|) = log

(
| 1
v∗
α̂(t/v∗)|(ξ)

)
+ log (|û(ξ)|) .

Let us compute log(|ôbs(ξ)|)− log
(
| 1v α̂(t/v)|(ξ)

)
for a set of values for v. For most of the v values, the

result will present all sorts of oscillating patterns, because we are subtracting phase-shifted oscillations
(see Fig A.32). On the other hand for v close to v∗ the oscillations cancel (see Fig A.32). Thus, for
a wrong v, Log(|ôbs(ξ)|) will have a large total variation. Enforcing the total variation to be finite
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using a convolution with a small Gaussian (which also performs a denoising) leads to the following
definition of vest estimator of v

vest = argminv∈support(ρ)||O
(

(log(|ôbs|)− log(|1
v
α̂(t/v)|)

)
(ξ)||L1 .

4.1 Numerical implementation

1. For each line on the observed image in the direction of the blur:

(a) compute ||O
(
(log(|ôbs|)− log(| 1v α̂(t/v)|) ∗G

)
(ξ)||L1 , for different v ∈ support(ρ);

(b) keep the one that minimizes the previous;

2. average the estimator of each line to get vest.

4.2 Example : Agrawal’s code

Figure A.31 – Acquired image with the Agrawal et al. code and the (log) modulus of its Fourier transform.
Notice the vertical pattern trace of the flutter shutter code.

Unfortunately optimal codes have to be smooth, hence the previous scheme is not robust in practice.
However codes like Agrawal’s work. Moreover, trivial constant codes equal to one permit to guess the
velocity v and the direction analyzing the Fourier transform of such an acquired image. Hence the
reasonable scheme (particularly for aerial or satellite imaging) would be to build simultaneously two
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Figure A.32 – The observed image is simulated for a velocity v = 1. The graphs display the log of the sum of the
(modulus of the) Fourier transform in the direction of the blur minus the log of the (modulus) Fourier transform of
the code applied for several velocities v (log(|ôbs|)− log(| 1

v
α̂(t/v)|)). From top to bottom and left to right for v = 0

(TV-norm=31.28), v = 0.5 (TV-norm=33), v = 1 (TV-norm=25), v = 1.5 (TV-norm=44). The estimated velocity
is 1, as the velocity which minimizes the TV-norm of log(|ôbs|)− log(| 1

v
α̂(t/v)|). In other words deconvolving with

wrong kernels leads to an oddly oscillating (modulus) of the Fourier transform which is not credible in a natural
image.

images, one with, and one without a Flutter-Shutter, use the standard image to estimate accurately
v, then use this value of v and to deconvolve the flutter shutter image.
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Chapter IX

Discussion and Conclusion

This thesis has started by modeling the stochastic photon acquisition of a moving landscape by a
light sensor. The model intrinsically contains noise terms due to the Poisson photon emission. This
model permits to formalize and analyze a general flutter shutter theory which includes the standard
photography, the original Agrawal et al. flutter shutter, two suggested generalizations of the flutter
shutter and the Levin et al. motion-invariant photography. A formula providing directly the SNR of
the sharp recovered images has been given, for all these methods. It also permits to prove what we
called the flutter shutter paradoxes. A well optimized flutter shutter does always beat the traditional
camera, even using the same aperture time. And, for an infinite exposure time accumulating many
more photons than a snapshot the SNR remains finite (contrarily to the classic still photography).
Two kinds of flutter shutter setups have been considered: an analog flutter shutter and a numerical
flutter shutter permitting smoother, negative gain-control-functions and leading to the best SNR
of the restored images. It also appeared that the motion-invariant photography is a particular case
of an analog flutter shutter. The motion-invariant photography has been generalized to the case
of unknown velocity direction by using a numerical flutter shutter. It is proven that knowing the
velocity the best flutter shutter code comes from the Fourier series coefficients of a (zoomed) sinc
function. The SNR raise is of 17% compared to the best snapshot leading to a poor efficiency of such
an acquisition system, even if the exposure time is infinite. Also, the thesis assumes that images are
acquired at an infinite numerical precision. Of course, taking the limited dynamic range, saturation
or quantization effects in account could only degrade this factor. Then, a better mouse trap was
set up to increase the efficiency of the flutter shutter beyond the 17% bound of one of the flutter
shutter paradoxes. It was proven that, on average, the SNR can increase significantly provided the
probability density of the observed velocities is known a priori, or learned if the camera code can be
parametrized thereafter. Optimized snapshots have been considered leading to the definition of best
blur. It gives the best aperture time to use in a standard camera and can be used, for example, to
compute the ideal number of stages of the time delay and integration device commonly used in push
broom satellites. A reverse engineering of all classic flutter shutter codes was performed, it provides
the underlying probability density for which they are optimal. The conclusion is that the flutter
shutter is useful in presence of (unknown) velocities, and can even become SNR efficient depending
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on the probability density of the observed velocities.

Limitations, future work
This study assumes that the analog flutter shutter is an ideal mathematical object. Therefore, the
time responses and/or imperfection of the temporal mask required to implement this apparatus are
neglected implying that the provided results are optimistic. Most of the analysis and all the experi-
ments are limited to the case of uniform translational motion. Space-variant blur has strong practical
relevance, like camera shake blur, as it behaves rather differently than the uniform blur and could be
considered in a future work. Furthermore, the applied nature of the problem calls for experimental
validation using a real flutter shutter camera.
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Chapter I

Non Uniformity Correction

This chapter proposes a new way to correct for the non uniformity and the noise. The method was
initially designed for uncooled infrared-type images but also applies to other kind of camera devices.
The method works on static images, needs no registration, no camera motion and no model for the
non uniformity. The proposed method uses a hybrid scheme including an automatic locally-adaptive
contrast adjustment and a state-of-the-art image denoising method. It permits to correct for a fully
non-linear non uniformity and the noise efficiently using only one image. We compared it with total
variation on real raw and simulated non uniformity infrared images. The strength of this approach
lies in its simplicity, and on its low computational cost. It needs no test-pattern or calibration and
produces no “ghost-artifact”.

1 Introduction

Infrared imaging has proved to be a very efficient tool in a wide range of industry, medical, and
military applications. Infrared cameras are used to measure temperatures, signatures, to perform
detection, etc. However, the performance of the imaging system is strongly affected by the random
spatial response of each pixel sensor. Under the same illumination the readout of each sensor is
different. It leads to a structured noise resulting in a row or line pattern in the images (depending
on the readout system). This “noise” is called fixed pattern noise and produces “non uniformity”
in the observed images. These differences between sensor readout are due to imprecisions in the
fabrication process, among other issues [11] and are stronger at longer wavelength such as in infrared
imaging [112]. The readout of a pixel sensor is a non linear [11] function of the incoming luminance.
The non uniformity is a serious practical limitation to both civilian and military applications - as it
severely degrades image quality [85] (see Fig. A.1). For uncooled infrared cameras the problem is
even worse because the detector response evolves quickly with time. Therefore the correction cannot
be done once and for all by the manufacturer. It also means that we need to estimate, for each pixel,
a function with little or no model at all and using few or one image to aim a good correction. Indeed
the use of numerous images to achieve the correction leads to artifacts –those are called “ghosts
artifacts” and are challenging to remove [42, 94, 107, 146, 162, 163]– because of the sensor drift
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Figure A.1 – On the left : an image (RAW) taken with an infrared camera. The non uniformity is so strong
that it is hard to distinguish between the noise and the underlying landscape. On such an image performing an
identification, matching pattern, etc. is almost hopeless. On the right the same image corrected with the proposed
method.

[105, 112, 113]. In other words, for each pixel, the correction at times t1 and t2 6= t1 are different. A
correction is so much needed, that in many uncooled infrared cameras a flap closes every 30 seconds
to perform a partial calibration [49, 58]. This interrupts the image flow, which is problematic for
many applications. Thus, for uncooled infrared cameras a periodic update of the non uniformity
correction is required.
A good non uniformity algorithmic correction is a key factor in ensuring the best image quality
and the robustness of the downstream applications such as pattern recognition, image registration, etc.

A review of existing techniques is proposed in section 3. A single image, fully automatic, non
uniformity correction algorithm is detailed in section 4 and generalized to a locally adaptive variant
in section 5. It shows that motion compensation or accumulation algorithms are not necessary to
achieve a good image quality. The proposed method can compensate for a fully non linear non
uniformity, without any parametric model on the non uniformity side. It does not require motion, or
motion compensation, does not need a test pattern or calibration and does not produce any “ghost
artifact”. A state of the art denoising algorithm is modified to suit our context.The proposed method
is illustrated in section 6 on simulated non linear non uniformity in Figs. A.6-A.7, compared with a
total variation based method (this method is described in section 6.1) in section 6.2 and evaluated on
real raw LWIR images from thermal infrared cameras and thermal infrared hyperspectral images
in section 6.3.

2 Image acquisition model

An imaging sensor is a device that collects photons and converts them into charges. The standard
readout technique of sensors works for each row (or line) independently and consists of transporting
charges from the pixels to a counter (which produces the numerical value to be read). Each pixel has
its own (and unknown) transfer function response. Furthermore, for each column the counter transfer
function is different. The function resulting of the whole chain sensor-counter is not linear [11]. In the
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sequel we will assume without loss of generality (w.l.o.g.) that the non uniformity comes only from
the sensor part. It is the difference between (transfer) functions that produces the non uniformity
and leads to a structured noise resulting in a row or line pattern in the images. This model applies as
soon as the readout is parallel among columns. This is the always the case with the LWIR arrays or
the thermal infrared hyperspectral camera considered here. The perturbation model is

o(i, j, t) = φ(i,j,t) (u(i, j, t) + η(i, j, t)) , ∀(i, j, t) ∈ {1, ..., N} × {1, ...,M} × R+, (I.1)

where

• (i, j, t) ∈ {1, ..., N} × {1, ...,M} × R+ is the pixel at position (i, j) and time t ≥ 0;

• u(i, j, t) is the ideal (noiseless) landscape value;

• η(i, j, t) is a random photon noise;

• φ(i,j,t) : {0, ..., 255} 7→ {0, ..., 255} is the contrast change (transfer function) of the pixel sensor
at position (i, j) and time t ≥ 0;

• o(i, j, t) is the observed value at position (i, j) and time t ≥ 0.

Omitting the noise, φ(i,j,t)(x) represents the readout of the pixel (i, j) at time t for some incident
radiance x. At time t the transfer function of the pixel (i, j) and the transfer function of the counter are
contained in φ(i,j,t) (w.l.o.g). At each pixel sensor (i, j) and time t the photon (Poisson) noise η(i, j, t)
is sensed (and added to the ideal landscape pixel value u(i, j, t)), thus it also undergoes the contrast
change function φ(i,j,t). This means that correcting for the non uniformity also whitens the noise and
makes it easier to sweep. Consequently, that if a denoising algorithm has to be applied, it must be after
the non uniformity correction (a fact that will be used in section 5). Indeed white noises are easier to
remove. The proposed model is consistent with the approximated linear model of the classic literature
(in terms of noise). Furthermore, notice that the hypothesis on the domains and images {0, ..., 255} of
the contrast changes φ(i,j,t) is no restriction (but only convenient to use). Consequently, (I.1) models
thoroughly the whole acquisition process including the noise that is also modified by the non-uniformity
of the sensor array. It permits to deal with a realistic non linear sensor response [11] contrarily to
the classic linear (gain/offset) approximation used in the literature. The goal of a non-uniformity
correction algorithm is to compensate for the local contrast changes induced by the φ(i,j,t) which
means to apply some φ̃(i,j,t) such that φ̃(i,j,t)

(
φ(i,j,t)

)
= g(x) for (i, j, t) ∈ {1, ..., N}×{1, ...,M}×R+.

Notice that, in general, it is useless to ask for g = Id since users, screens (gamma correction), etc.
usually tune the contrast of the images at ease.
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3 Related work

To get rid of the non-uniformity many techniques have been developed over the years. It is possible
to classify them into two main kinds:

• Calibration based techniques consist in an equalization of the response to an uniform black
body source of radiations. They are not convenient for real time applications, since they force
to interrupt the image flow. (This calibration is usually automatic, a shutter closing in front of
the lens periodically). They usually assume that φ(i,j,t)(x) = x+ b(i,j) ∀t ∈ [t1, t2[ (so called one
point NUC, one black body) or that φ(i,j)(x) = a(i,j)x + b(i,j) ∀t ∈ [t1, t2[ is linear (two points
NUC using two black bodies). Thus they assumes piecewise constant φ(i,j,t) on the time interval
[t1, t2[. A new correction is performed every t2 − t1 (because of the sensor drift). Of course the
two points NUC [34] performs better.

• Scene based techniques, involving motion compensation or temporal accumulation. Such meth-
ods are complex and require certain observation conditions (motion). They usually assume linear
φ(i,j).

In the sequel, we will focus on scene based techniques as calibration based techniques require to
interrupt the camera which is calamitous in practice. Numerous algorithms have been reported in the
literature to remove the fixed pattern noise caused by the lack of a cross-pixels sensor equalization.
Some algorithms estimate the sensor parameters while, equivalently, others attempt at recovering the
“true” landscape value u(i, j, t). These algorithms process a sequence of images (o(i, j, t))t∈1,...,L, not a
single frame. Thus they are subject to the creation of “ghost artifacts”, the reason is discussed below.
Most of them use a simplified (linear) model for the transfer function of the pixel sensor:

o(i, j, t) = a(i,j,t) (u(i, j, t) + η(i, j, t)) + b(i,j,t), ∀(i, j, t) ∈ {1, ..., N} × {1, ...,M} × R+ (I.2)

There are methods like [43] suggesting to equalize the mean and standard deviation (stddev) through
time of each pixel sensor by a linear transform. Such algorithms rely on the data diversity found in
most of the video sequences with some degree of motion. The key idea is

[H:] If all pixel sensors have seen the same landscape, they should have (at least) the same mean
and same standard deviation, namely

mean
t∈{1,...L}

(o(i, j, t)) = Cm ∀ (i, j) ∈ {1, ..., N} × {1, ...,M} (I.3)

stddev
t∈{1,...L}

(o(i, j, t)) = Cstd ∀ (i, j) ∈ {1, ..., N} × {1, ...,M}. (I.4)

To summarize the authors suggest to adjust the sensor readout using a linear transform to enforce
the equalities (I.3-I.4) above. But this is only possible if there is a long camera sequence with enough
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motion where each sensor sweeps many different parts of the scene. Indeed a small window leads to
little or no correction at all since it weakens [H]. A subtle consequence of using long sequences is that
the sensor (the contrast changes φ(i,j,t)) is assumed to be constant over the whole sequence. If the user
cannot sufficiently move the camera, the convergence will be slow. This means that it is probable that
between the beginning and the end of the sequence the φ(i,j,t) will have changed because of the sensor
drift. It leads to an inaccurate estimation of φ(i,j,t): two pixels that have not seen the same radiance
should not satisfy (I.3) or (I.4). Moreover since the sensor is not linear, there will be some residuals.
These residuals may be negligible, except when the scene changes suddenly: the approximation is
wrong, because it is based on past observations. It will take time to update the estimation, depending
on L. The residues of the correction as well as the previous landscape will remain superimposed in
the subsequent frames. This situation creates the “ghost artifacts”. The usual way to avoid these
“ghost artifacts” is to restart the learning process (to forget some past data) if a new scene appears.
Nevertheless, the detection of scene changes may be treacherous particularly if it occurs in a small
portion of the image (a new vehicle, etc.) since it may be masked by the non uniformity (see Fig.
A.1).
A variant, like for instance [93], adjusts the minimum and the maximum of the readout values,
assuming the time histograms observed in each sensor are equal over a long enough time sequence:

mean
t∈{1,...L}

(o(i, j, t)) = C1 ∀ (i, j) ∈ {1, ..., N} × {1, ...,M} (I.5)

stddev
t∈{1,...L}

(o(i, j, t)) = C2 ∀ (i, j) ∈ {1, ..., N} × {1, ...,M}. (I.6)

This last method is called Constant Range [138]. As pointed out by several authors [42] the length
L of the sequence is a crucial factor of success here. There is no way to tune L a priori and two
problems may arise:

• If L is too small and the estimation is wrong because all sensors have not seen the same landscape
([H] is wrong);

• If L is too large and because of the approximation bias and time drift of the sensor behavior,
the previous images may appear as superimposed in the last ones. We retrieve the previously
cited “ghost artifact” effect.

There is a way to avoid the “ghost artifacts” [42], which consists in a reset of the estimation when
the scene changes too much. For example, in [42] the authors use a simple threshold to perform scene
change detection (but the level of this threshold is not easy to tune in general). In [106] the author
state that “slow global motion and strong edges in the scene are the main causes" of the non uniformity.
Indeed non consistent with [H:] motions and/or bad length L of the sequence used to enforce (I.3-I.4
or I.5-I.6) lead to “ghost artifacts” because of the sensor drift. But, it is only more visible near edges.
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Indeed the higher dynamic near edges weakens the linear approximation of the correction. The idea of
treating edges separately also appears, for example, in [158]. To sum up, all these algorithms require
a long exposition time with a varying scene and a serious (and sometimes involuntary) camera motion.

There are numerous implementations and studies [37, 44, 46, 91, 94, 114, 138, 147, 148] for these
two major algorithms. A recursive filter [43] estimates the parameters of the linear function which
approximates the φ(i,j,t), or a Kalman filter is preferred [137]. Other authors [115, 139] propose a
neural network based algorithm. Several other variants can be found in [106]. The registration based
algorithms [142] consider often only translations [20] (but homographies should be used instead, at
least on a static scene). Creating a panorama has been proposed [41] to obtain a ground truth, and
to use it as a calibration pattern. However, as pointed out [160], in presence of the structured fixed
pattern noise occurring in most infrared cameras, panoramas won’t lead to a good result. Indeed, a
mean act as a low pass filter. Thus, low frequencies of the non uniformity will remain in the produced
images.
Recently in [146] the authors minimize the total variation of the produced images. They also assume
a linear model for the non uniformity. It generalizes [87] but works on image sequences. Thus, it is
also subject to “ghost artifacts”. In the following, the presented algorithm works on a single image.
Furthermore, in the sequel we will omit the time dependence t of the non uniformity (φ(i,j,t) := φ(i,j)).

4 The midway infrared correction

The goal of this section is to give the background (section 4.1) and details (see sections 4.2,4.3) of the
non uniformity correction of infrared images by midway equalization (MIRE) [131] (see [132] for an
on line use and implementation in C + +).

4.1 The midway histogram equalization method

The midway algorithm was designed initially to correct for gain differences between cameras [29]. It
permits to compare two images taken with different cameras more easily after their histograms have
been equalized. This algorithm was later extended to flicker correction [30]. The midway equalization
achieves much better and smoother results than giving flat (uniform) histograms to images. The
idea of the midway equalization is to replace the (arbitrarily chosen) uniform histogram of classic
uniform equalization by an histogram depending on the input images. It is optimal in the sense of the
Wasserstein (transport) distance; the midway histogram being at equal distance of the histograms of
input images. The midway equalization is defined and explained below.
Consider two cumulative histograms H1, H2 of two images. The midway cumulative histogram of the
corrected image is simply

Hmid−1 := H−1
1 +H−1

2
2 ,
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and this average can be extended to an arbitrary number of images (and to non constant weights). A
precise definition of the pseudo inverse is given in section 4.3. Once the midway histogram is computed,
a monotone contrast change is applied to images to specify Hmid as their common histograms. Thus,
all images get the midway histogram, which is the best compromise between all histograms (see Fig
A.2).

Figure A.2 – Two histograms h1, h2 (left side) and the corresponding midway histogram h_mid (on the right),
compared to the direct histogram average, which would create two modes (centered at n1 and n2) and is therefore
wrong. The uniform equalization would destroy the grey level dynamic and create artifacts. It is not a good
candidate to get good quality images.

4.2 The idea

Since many infrared correction algorithms actually propose to equalize the temporal histograms of
each pixel sensor, the midway is quite adapted to get a better result than a simple equalization.
Equalization can be based on the fact that single columns (or lines, depending of the readout
system) carry enough information by themselves for an equalization. The images being continuous,
the difference between two adjacent columns is statistically small, implying that two neighboring
histograms should be nearly equal. This hypothesis here is similar to the temporal one [H] but is
better suited to the decision to carry the equalization inside the image itself. It does not require any
additional hypothesis on the non uniformity (linearity, etc.). In other words, the proposition is to
transport the histogram of each column (or line) to the midway of histograms of neighboring columns
(resp. lines). In presence of strong fixed-pattern-noise (FPN) it will be useful to perform this sliding
midway method over a little more than two columns, because the FPN is not independent in general.

4.3 The midway infrared equalization algorithm (MIRE)

We give here the numerical details to implement the midway infrared equalization algorithm. It is fully
automatic, it compensates for non linear non uniformity. Thus, it suits well an infrared image denoising
chain (as a preprocessing for example). Assume in the sequel that the equalization is performed among
the columns of a discrete (8-bits w.l.o.g.) image o(i, j) ∈ {0, ..., 255} ∀(i, j) ∈ {1, ..., N} × {1, ...,M}.
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The “midway infrared equalization (MIRE)” algorithm proceeds as follows
For each column j ∈ {1, · · · ,M}:

1. compute the cumulative histogram Hj of each column cj

Hj : {0, · · · , 255} −→ [0, 1]
l 7−→ Hj(l) = 1

N

∑l
k=0

∑N
i=1 1{o(i,j)=k},

2. for each column cj compute a local midway histogram H̃−1
j :=

∑
g

k∈(−n,··· ,n)
(k)H−1

k+j using Gaus-

sian weights g(k) = gs(k) = 1
s
√

2πe
−k2
2s2 with standard deviation s, the window size is 2n where

n = floor(4s) and,

H−1
j : [0, 1] −→ {0, · · · , 255}

z 7−→ H−1
j (z) = min{l ∈ {0, · · · , 255} | Hj(l) ≥ z},

3. specify the histogram of the column cj onto this midway histogram H̃j

d(i, j) = H̃−1
j (Hj(o(i, j))) ∀i ∈ {1, · · · , N}.

4. Output image: d(i, j).

Since we work on images separately the method is not affected by motions or scene changes. This
completely avoids “ghost artifacts" [42, 93] and any problem caused by the calibration parameters
drifting over time. The above steps 1−3 will be summarized in a single formula in the final algorithm
below, without recurring to inverse histograms. An algorithm selecting s is given in the next section.

Automatically Fitting the Perfect Parameter

The non-uniformity leads to an increased total-variation norm. Hence, following the idea of [87], the
smoothest image is also the one with little or no non-uniformity at all. So the simplest way to find
the good (s∗) parameter automatically is :

s∗ = argmins||Is||TV−line where Is is the image processed by MIRE with the parameter s. The
discrete total variation is defined by ||I||TV−line =

∑
i,j |(∇I)i,j | with (∇I)i,j =

(
Ii,j+1 − Ii,j

)
.

The optimization can be done by scanning a broad range of s. Choose a s_step and a s_max
(s_step = 0.5 and s_max = 8 by default for the demo). Start with s = 0, repeat : 1) process the
image 2) increase s of s_step, then stop when s > s_max.

The following ensures a certain safety of the proposed method, a fact that is confirmed by the
experience of Fig A.3.
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Theorem 1. If Hi i ∈ {−n, ..., n} are 2n + 1 cumulative histograms of the same landscape seen by
2n+ 1 different columns of the sensor, and H−1

mid =
∑n
j=−n

H−1
j

2n+1 then :

||Hmid −Htrue||2 ≤ max (
i∈{−n,...,n}

||Hi −Htrue||2)

Moreover if the Hi ∀i ∈ {−n, ..., n} from the 2n + 1 columns of the sensor are i.i.d. and centered on
Htrue then

||Hmid −Htrue||2 →
n→∞

0

Figure A.3 – On the left : an uncorrupted test image (boat). On the middle : the result of the MIRE algorithm
(s∗ = 0); the produced image is the same. This experiment was done using [132]. On the right : the result of
the locally adaptive variant of MIRE described in section 5.1 (s∗ = 0 everywhere in the image). As predicted the
algorithm does not make the image worse or create artifacts (safety check). Results on real raw images corrupted
with non uniformity are detailed in section 6.

5 The Adaptive and Denoising midway equalization algorithm (AD-
MIRE)

In this section we describe the novelties proposed to our previous work (see section 4 and [131, 132]).
It consists in a modification of the MIRE (see section 4.3) to make it locally adaptive to the image.
The need for a locally adaptive scheme is illustrated below (see Fig. A.5). This modification is detailed
in section 5.1. The result of this locally adaptive scheme is nevertheless corrupted by the noise (which
may be strong as in Fig. A.4). Thus, we shall also embed a denoising scheme in order to increase the
signal to noise ratio.
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Figure A.4 – On the left : a real raw image produced by an infrared camera. On the right : the result of the
locally adaptive MIRE algorithm (see section 5.1). It is strongly corrupted by noise.

5.1 The adaptive midway equalization algorithm

There is no real justification (except simplicity) to keep a constant parameter s over the whole image.
Indeed the image can present different contents and structures in different areas. Thus focusing on
different parts of the image the best s parameter may be different. A fact that is illustrated in Fig. A.5.
Thus, we propose to adapt the s parameter of the MIRE algorithm locally. The proposed algorithm
is :

1. For each s in s_min : s_max (see section 4.3) process the image by MIRE;

2. Decompose all images in patches (8× 8 patches always used here);

3. For each patch keep the one with smallest TV − line (the best one as in section 4.3);

4. Average and aggregate all patches to get the non uniformity corrected image.

5.2 The denoising step : anisotropic DCT threshold on overlapping patches

Since the processed images seem to be corrupted by a strong noise we propose to adapt [26] to
perform a good denoising. Notice that from the model detailed in section 2 we deduce that any
denoising should be applied after the non uniformity correction as it whitened the noise. Indeed a
perfect non uniformity correction would lead to a white noise in the restored image. A fact that
can be checked using a “reverse engineering” of [83]. Thus we propose to modify the DCT threshold
denoising algorithm of [26] which performs a DCT threshold on sliding and overlapping patches. It is
well suited with the previous step of section 5 which also uses patches. Moreover [26] is unaffected1 by

1The non local means denoising [14] has issues on some images (depending on the amount of residues of the non uni-
formity). Indeed residues of non uniformity interfere with patch distances (even after a column by column normalization
of patches by their variance.)
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Figure A.5 – On the left : a real raw image produced by an infrared camera. Middle : the result of the algorithm
with the parameter s = 1. On the right with s = 7.5. For example, focusing on a zone in the middle of the image
the image with s = 7.5 is nicer but, the zone below poles is bad. On the other hand in the image processed with
s = 1 the zone in the middle is still corrupted by the non uniformity. Thus, a fixed s parameter for the whole image
will not lead to the best quality possible everywhere.

residues of non uniformity. We kept 8× 8 patches as in [26] for the examples given below in section 6.
The modification consists of the use of two different thresholds in the direction of the non uniformity
and the orthogonal direction. Indeed the coefficients in the direction of the lines should be bigger (for
an image corrupted by columns non uniformity noise as in Fig. A.1) to denoise more. Indeed this
direction is more corrupted by residues of non uniformity. It leads to an anisotropic filtering of the
patches. To sum up, we suggest to perform an anisotropic DCT threshold on overlapping patches as
a final denoising step. Provided two thresholds Ti and Tj (denoising strength) in the i (lines being
indexed by i) and j direction of the image the algorithm is :

1. Decompose the image into sliding patches;

2. For each patch :

(a) Compute 2D-DCTII transform of the patch;

(b) Threshold the DCTII coefficients, with a threshold equal to Tj in the j direction and Ti

(lines being indexed by i) everywhere else;

(c) Calculate inverse 2D-DCT transform of the patch;

(d) (normalize by a factor of 1
4patch_size∗patch_size);

3. Average and aggregate all patches to get the denoised image.

5.3 Implementation

The implementation is easy and was done with C++. To avoid border effects we used a reflection of
the image across borders. A C + + source code of the MIRE algorithm is available in [132], it allows
on line experiments. The demonstration performs the MIRE algorithm, permits to see and download
the result and shows the s∗ parameter computed by the algorithm. For the denoising step we refer to
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[155], where a C + + source code is available (as well as an on line demonstration). The overall chain
of ADMIRE is :

1. Perform the adaptive midway equalization algorithm described in section 5.1;

2. Perform the anisotropic DCT threshold on overlapping patches described in section 5.2.

Of course a temporal extension (to videos) of the proposed method avoiding flicker (and “ghost arti-
facts”) is possible, using a temporal midway [30].

6 Experiments

Simulations of Fig. A.6-A.7 are made using a nonlinear randomly generated model of NU. Results are
quantified in terms of RMSE and RMSECI (the contrast invariant RMSE reflects more the intrinsic
quality of the image). They confirm the guess of visual improvement in quality. The comparison with
the total variation based method is given in Figs. A.8-A.9. The proposed algorithm outperforms it.
The algorithm was run on real raw images, Figs. A.10-A.15, thus for theses experiments it is not
possible to compute a RMSE (as the groundtruth is unknown). The proposed algorithm outperforms
classic literature methods in real situations on real (non simulated) non uniformity while using only
one image.

6.1 Total variation based method

Let o(i, j) ∀(i, j) ∈ {1, ..., N} × {1, ...,M} be the observed image. The TV − line based method [87]
looks for a constant k(j) to add to each column. So

||o(i, j) + k(j)||TV−line

is as small as possible. This boils down to the minimization of
∑
i |o(i, j + 1) + δ(j)− o(i, j)| for each

column j (notice that this sum involves only the column j and its neighboring column j + 1). Then
k(j + 1) = k(j) + δ(j), where k(0) = c chosen so that the resulting image has the same mean as the
observed image o. In practice this can be done by :

1. Keep the first column intact (j = 0);

2. For each j ∈ {1, ...,M};

(a) Minimize
∑
i∈∈{1,...,N} |o(i, j+1)+δ(j)−o(i, j)|, by trying all possible δ(j) constants (using

the quantification of the image);

3. Add a constant to the whole image so the output has the same mean as o.
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Figure A.6 – On the left : an image with a strong simulated non linear non uniformity. On the right : the image
processed by the proposed algorithm. RMSE = 9.6629, RMSECI = 5.7314.

Figure A.7 – On the left : an image with a strong simulated non linear non uniformity. On the right : the image
processed by the proposed algorithm. RMSE = 8.7100, RMSECI = 7.3411.
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6.2 Comparative experiments

The comparative experiments with the total variation were processed using Megawave 2 (resthline
module [87]). Experiments on real raw infrared images are shown in Figs. A.8-A.9. The denoising
step of ADMIRE has been deactivated for these experiments to allow a fair comparison with the
total variation (TV) based method (which does not denoise). ADMIRE always shows a significant
improvement on the TV based method and the final visual quality is very satisfactory.

Figure A.8 – On the left : a real raw image of a building taken by an infrared camera. Middle : the total
variation based method. Notice the artifacts created on the concrete stripes. The concrete stripes are at constant
temperature thus, they should keep a constant grey level. On the right the proposed method (we deactivate the
DCT denoising to provide a fair comparison).

Figure A.9 – On the left : a real raw image of an outdoor scene taken by an infrared camera. Middle : the
total variation based method. Notice the artifacts created below the poles. On the right the proposed method (we
deactivate the DCT denoising to provide a fair comparison).

6.3 Experiments on real raw images

The subsequent experiments permit to visualize the result of the proposed method on numerous real
raw LWIR infrared and thermal infrared hyperspectral images. We used different types of landscape
to visualize the effect of the proposed non uniformity correction on edges, textures, and at different
level of time exposure (noise). The conclusion is that the quality is quite satisfactory (see Figs.A.10-
A.17).

2Megawave is available at megawave.cmla.ens-cachan.fr/
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Figure A.10 – On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

Figure A.11 – On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

7 Discussion and conclusion

In this part we started by modeling the image formation chain including the non uniformity and the
Poisson (shot) noise terms. From this model we deduced the correct algorithm (chain) to apply to
an image in order to perform a good non uniformity correction. We developed an image processing
chain to correct for the non uniformity and the noise. A single image locally adaptive non uniformity
correction was designed. It can compensate for fully non linear non uniformity, without any
parametric model on the non uniformity side. It does not require motion, or motion compensation,
does not need a test pattern or calibration and does not produce any “ghost artifact”. A state of the
art denoising algorithm was modified according to the model to obtain a non uniformity correction
chain. Evaluations using both simulated and real raw images from infrared and thermal infrared
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Figure A.12 – On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

Figure A.13 – On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

hyperspectral cameras show that the approach performs an efficient non uniformity correction in
terms of RMSE, contrast invariant RMSECI and visual image quality. Comparisons were made
with a total variation based method. The conclusion is that a single image, ghost-less and non linear
non uniformity correction is not only possible but robust and quite efficient.
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Figure A.14 – On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.

Figure A.15 – On the left : a real raw image taken by an infrared camera. On the right the result of ADMIRE.
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Figure A.16 – On the left : a real raw image taken by an hyperspectral camera. On the right the result of
ADMIRE.
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Figure A.17 – On the left : a real raw image taken by an hyperspectral camera. On the right the result of
ADMIRE.
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1 Proof of α̂MIP−ideal(ξ) = 1√
|aξ|
e−i

π
4 sign(ξ)

First we remark that αMIP−ideal is L1
loc(R), then for u = ρeiθ ∈ C, Re(u) > 0 (which enforces the

absolute convergence of the following integral) we have
∫+∞

0
1√
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e−utdt = limR→+∞
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1
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Which yields, by using Lebesgue’s dominated convergence theorem,
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Thus (from 1), limn→+∞
∫
[0,n
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for Re(u) > 0,
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t
e−tdt. By passing to the limit, which is easy by splitting

the integral, we get the wished Fourier transform

α̂MIP−ideal(ξ) = e
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0
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0
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t
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where sign(ξ) = 1 if ξ ≥ 0 and 0 elsewhere.
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