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Q1. You are given n independent samples from a one dimensional Gaussian distribution
x1, . . . , xn ∼ N(θ, σ2) whose mean θ is unknown but is assumed to come from a dis-
tribution θ ∼ N(μ0, σ

2
0).

1. Find the ML and MAP estimates for θ.

2. Find the bias, variance and mean squared error of these estimators.

3. What is the Cramer-Rao lower bound on the mean squared error? Is it achieved by
the above estimators? If a gap between the bound and the MSE of an estimator
exists, explain why.

Q2 In many practical scenarios the goal is to estimate a random quantity x, but unfortunately
we can only observe it with some additive noise y (which may not necessarily have zero
mean !). Consider such a setting: Let x, y1 be two independent Gaussian random variables
with distributions x ∼ N(μ, σ2), y1 ∼ N(μ1, σ

2
1), where μ, μ1, σ, σ1 are known. Suppose

we observe z = x + y1.

1. What is the distribution of z ?

2. Find E[x|z].

3. Suppose that given z, your goal is to construct an estimate x̂ = x̂(z) of x, with minimal
mean squared error (MSE) E[(x̂ − x)2]. Find the optimal such estimate under the family
of linear transformations, x̂(z) = a + bz. What are the optimal a, b ? Is E[x̂(z)|x] = x ?
What happens when σ1 → ∞, can you explain this ?

4. In some cases one can measure the same quantity with different measurement devices,
hence leading to multiple (noisy) measurements of the same quantity. Suppose here we
observe both z1 = x + y1, and z2 = x + y2, where y1 ∼ N(0, σ2

1) and y2 ∼ N(0, σ2
2) are

independent of each other. Assume both σ1, σ2 are known. How would you form a single
estimate of x in this case ?

Q3

For many statistical problems, if we observe i.i.d. data xi from some density pθ(x) and
estimate θ by the Maximum Likelihood principle, we obtain a consistent estimator that as
n → ∞ converges to the true value θ. However, this is not always the case !

Consider the following setting. The unknown density pθ(x) is a mixture of two 1-D Gaus-
sians, where one is known explicitly and the other is unknown. That is, θ = (μ, σ) is of
the form

pμ,σ(x) =
1
2

1
√

2πσ2
exp
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2σ2

)

+
1
2

1
√

2π
exp

(

−
x2

2

)

1. Let x1, . . . , xn denote n observed data samples. Show that the log-likelihood grows
unbounded for certain values of μ, as σ → 0. [Hint: What happens if μ = xj , one of the
observed data points ?]

1



2. One approach to circumvent the problem above is to set σ > σ0. However, if one of the
Gaussians has width σ < σ0 it will not be recovered even in the limit n → ∞. Suppose
that instead we put a sample-size dependent constraint σ > σ(n). How fast can σ(n) tend
to zero while still ensuring the consistency of σ, μ as n → ∞ ?
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