
Statistical Inference and Learning- Final Exam

Yiqing Wang and Boaz Nadler

Date: Thu, Feb. 4, 2016, 9:30am-1pm (3.5 hours)

Please answer ONLY 3 out of the 4 following questions. The total number of points is
more than 100 !

Q1 Let Y be a random variable taking values in a finite interval [−b, b]. Its mean is zero,
namely, E[Y ] = 0. We observe n i.i.d. samples (X1, · · · , Xn) from the random variable
X = Y + µ, where µ ∈ R is unknown. Our task is to estimate the true value of µ.

1. Show that the sample mean X̄n = 1
n

∑n
i=1Xi is an unbiased estimator of µ

E[X̄n] = µ.

Is this the only unbiased estimator of µ ? Explain your answer.

2. Under the square loss, the estimator X̄n’s risk at µ is its MSE

R(X̄n, µ) := E[(X̄n − µ)2].

Show that the maximum risk supµ∈RR(X̄n, µ) decreases at rate O(1/n).

3. Show that for all c > 0

P
(
|X̄n − µ| ≥ cn−1/4

)
≤ 2 exp

(
−
√
nc2

2b2

)
. (1)

Hint: use Hoeffding’s inequality.

4. In some situations, there is a-priori knowledge or belief that µ may be equal to zero with
non-negligible probability. One option to take such knowledge into account is to consider
the following estimator of µ, which outputs precisely a value of zero if X̄n is small

µ̂ = Tn =

{
X̄n, if |X̄n| > n−1/4

0, if |X̄n| ≤ n−1/4.

Show that for all k ≥ 1, nkR(Tn, 0) converges to zero. (Hint: use Cauchy-Schwartz’s
inequality and Inequality (1)). This implies that Tn is super-efficient at µ = 0, since its
MSE at µ = 0 decreases at a much faster rate than O(1/n).

Remark: One can show that for any fixed µ 6= 0, its MSE decay rate remains at O(1/n).

5*. Section 4 above seems to imply that Tn is a better estimator than the sample mean
X̄n. This, however, is not true and its super-efficiency at µ = 0 comes at a price: the
improvement of the estimator at µ = 0 results in an increase in risk at other values of
µ. In this section your task is to show that its maximum risk supµ∈RR(Tn, µ) actually
decreases at rate O(1/

√
n), hence much slower than O(1/n).

Specifically, let µn = 1
2n
−1/4. Show that (i) as n→∞, P

(
|X̄n| > n−1/4

)
→ 0; (ii) use the

result in (i) to show that limn→∞ n
1/2R(Tn, µn) = 1/4.
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Q2 Consider a system which can only be in one of two possible states S ∈ {0, 1}. If S = 0, it
emits a Rd-valued fixed signal a = (a1, · · · , ad) whereas if S = 1, the fixed output signal is
b = (b1, · · · , bd). The signal vector is only observed after it has been corrupted by additive
Gaussian noise N which satisfies

E[N ] = 0, E[NNT ] = Σ.

The covariance matrix Σ is assumed to be of full rank. Therefore, the noisy signal vector
can be expressed as

Y =

{
a +N, if S = 0

b +N, if S = 1.

We want to detect the state S from the noisy signal Y by testing two hypotheses

H0 : S = 0 versus H1 : S = 1.

1. Show that the likelihood ratio test statistic is

(b− a)TΣ−1Y.

2. Construct the optimal rejection region so that its resulting type I error is equal to α.

3. Find the rejection region whose type I error equals its type II error. Such a rejection
region is said to be minimax optimal.

4*. Define γ =
√

(b− a)TΣ−1(b− a) as the signal-to-noise ratio (SNR) associated to this
detection problem. How do the errors of the minimax optimal rejection region depend on
the SNR γ ?

Q3 Let (x1, . . . , xn) be n i.i.d. observations from a probability distribution with density p(x).
Recall that in class we considered kernel density estimator of the form

p̂(x) =
1

nh

n∑
j=1

K

(
x− xj
h

)
(2)

with a suitably chosen kernel function K.

1. Suppose that p(x) is a smooth density such that its second derivative is smooth and
bounded, and in particular satisfies

|p′′(x)− p′′(y)| ≤ L|x− y| ∀x, y ∈ R

What is then an upper bound on the mean squared error E[(p̂(x0)−p(x0))2] at some fixed
point x0 and how does it depend on n? What are the conditions that the kernel K must
satisfy for this upper bound to hold ?

2. In practice we need to estimate the bandwidth h. A common method is leave-one-
out cross-validation. Explain this method and the resulting formula for estimating the
bandwidth.

3. In some cases, we know a-priori that the density p(x) has a compact support in an
interval I. For example, if x is a physical quantity that cannot be negative then x ≥ 0,
and I = [0,∞). Let us study what happens to the kernel density estimate (2) for points
near the boundary, when the kernel K is symmetric and supported on [-1,1].

To this end, write x = hz, where z ∈ [0, 1]. Show that

E[p̂(hz)] = a0(z)p(0)− h(a1(z)− za0(z))p′(0) +O(h2).
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where aj(z) =
∫ z
−1 u

jK(u)du.

4. In particular what is E[p̂(0)] ? Is it a consistent estimator of p(0) as n→∞ and h→ 0?
Suggest a simple correction method to get a consistent estimate of p(0).

Q4 Let x be a d-dimensional Gaussian random vector with distribution N (µ,Σ). We wish to
find a deterministic projection vector w, such that it is of unit length ‖w‖2 = 1 and the
variance of wTx, denoted by V ar[wTx], is maximal. Such a projection vector is called the
first principal component.

1. Show that up to a minus sign, w is the eigenvector with largest eigenvalue of Σ. (Hint:
Prove that V ar[wTx] = E[wT (x− µ)(x− µ)Tw] )

2. Let x1, . . . ,xn be n i.i.d. samples from the Gaussian distribution N (0,Σ), and let S be
the sample covariance matrix (assuming it is known that the mean is zero),

S =
1

n

n∑
j=1

xjx
T
j

Suppose that d = 5 and n > d. It turns out that the matrix S has 3 eigenvalues which
are exactly zero. What does this mean ? Is it possible that Σ is invertible, and why ? (no
need for rigorous proof here).

3. Suppose that Σ is a rank one perturbation of the identity matrix,

Σ = λvvT + Id (3)

with ‖v‖2 = 1. What is the first principal component w of Σ and what is the corresponding
variance V ar[wTx] ?

4. Assume the covariance structure of Eq. (3). Show that the sample variance in the

direction of v, namely vTSv is a random variable with distribution (λ+1)
n χ2

n.

(Recall that if Z1, . . . , Zn are i.i.d. N (0, 1) random variables then
∑n

i=1 Z
2
i ∼ χ2

n).

5. Eq. (3) is a common model of the covariance structure in multi-antenna communication
channels, where λ is then the signal-to-noise ratio, which is a measure of the quality of the
channel. Suppose that we observe two datasets, {xi}ni=1 and {yi}ni=1, both of which follow
the covariance model Eq. (3), with n = 200 and d = 5. For example, the xi are samples in
one time slot and yi are samples in the next time slot. We compute the sample covariance
of both datasets, Sx and Sy and their eigenvalues. We observe that eigenvalues 2,3,4,5 in
both cases are close to 1 (as expected) but the largest eigenvalue of Sx, λy1 = 46.3, whereas
λx1 = 51.2. This might indicate that the communication channel SNR has deteriorated,
but may also be due to random fluctuations around a value of say λ = 50. How likely is
the second scenario? What if n = 20, 000 instead ? Explain your answer.
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