Solution 1.4: we have by definition

$$
\mathbb{E}\left(T_{n}-\mu\right)^{2}=\mathbb{E}\left[\left(\bar{X}_{n}-\mu\right)^{2} 1_{\left|\bar{X}_{n}\right|>n^{-1 / 4}}\right]+\mu^{2} \mathbb{P}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right)
$$

At $\mu=0$, it simplifies to

$$
\mathbb{E} T_{n}^{2}=\mathbb{E}\left[\bar{X}_{n}^{2} 1_{\left|\bar{X}_{n}\right|>n^{-1 / 4}}\right] .
$$

The boundedness of \bar{X}_{n} and Cauchy-Schwarz's inequality lead to

$$
\mathbb{E} T_{n}^{2}=\mathbb{E}\left[\bar{X}_{n}^{2} 1_{\left|\bar{X}_{n}\right|>n^{-1 / 4}}\right] \leq \sqrt{\mathbb{E}\left[\bar{X}_{n}^{4}\right] \mathbb{P}\left(\left|\bar{X}_{n}\right|>n^{-1 / 4}\right)} \leq 2 b^{2} \exp \left(-\frac{\sqrt{n}}{4 b^{2}}\right)
$$

5. Show that for any fixed $\mu \neq 0, R\left(T_{n}, \mu\right)$ converges to zero at rate $O(1 / n)$.

Solution: thanks to the triangle inequality $\left|\bar{X}_{n}-\mu\right| \geq|\mu|-\left|\bar{X}_{n}\right|$, we deduce

$$
\mathbb{P}\left(\left|\bar{X}_{n}\right| \leq|\mu|-n^{-1 / 4}\right) \leq \mathbb{P}\left(\left|\bar{X}_{n}-\mu\right| \geq n^{-1 / 4}\right) \leq 2 \exp \left(-\frac{\sqrt{n}}{2 b^{2}}\right) .
$$

When $\mu \neq 0$, as soon as $|\mu|>2 n^{-1 / 4}$, we obtain

$$
\mathbb{P}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right) \leq \mathbb{P}\left(\left|\bar{X}_{n}\right| \leq|\mu|-n^{-1 / 4}\right) \leq 2 \exp \left(-\frac{\sqrt{n}}{2 b^{2}}\right) .
$$

Again, writing out the expression for the quadratic risk

$$
\begin{aligned}
\mathbb{E}\left(T_{n}-\mu\right)^{2} & =\mathbb{E}\left[\left(\bar{X}_{n}-\mu\right)^{2} 1_{\left|\bar{X}_{n}\right|>n^{-1 / 4}}\right]+\mu^{2} \mathbb{P}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right) \\
& =\mathbb{E}\left[\left(\bar{X}_{n}-\mu\right)^{2}\right]-\mathbb{E}\left[\left(\bar{X}_{n}-\mu\right)^{2} 1_{\left|\bar{X}_{n}\right| \leq n^{-1 / 4}}\right]+\mu^{2} \mathbb{P}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right),
\end{aligned}
$$

we find that the second and third term decrease much faster than the first one. Hence the conclusion.

Solution 1.5: we lower bound the MSE

$$
\mathbb{E}\left(T_{n}-\mu_{n}\right)^{2}=\mathbb{E}\left[\left(\bar{X}_{n}-\mu_{n}\right)^{2} 1_{\left|\bar{X}_{n}\right|>n^{-1 / 4}}\right]+\mu_{n}^{2} \mathbb{P}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right) \geq \mu_{n}^{2} \mathbb{P}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right)
$$

as the first term decreases at least as fast as $O(1 / n)$. Since we have by the concentration inequality

$$
\mathbb{P}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right) \geq \mathbb{P}\left(\left|\bar{X}_{n}-\mu_{n}\right| \leq \frac{1}{2} n^{-1 / 4}\right) \geq 1-2 \exp \left(-\frac{\sqrt{n}}{8 b^{2}}\right),
$$

it follows immediately that

$$
\lim _{n \rightarrow \infty} \mu_{n}^{2} \mathbb{P}\left(\left|\bar{X}_{n}\right| \leq n^{-1 / 4}\right)=\frac{1}{4 \sqrt{n}}
$$

hence the result.
Solution 2.2: Let η denote the LRT's threshold and we want it to satisfy

$$
\mathbb{P}\left((\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} Y>\eta \mid X=0\right)=\alpha .
$$

Note that under $X=0$, the test statistic is

$$
(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} Y=(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1}(\boldsymbol{a}+N) \sim \mathcal{N}\left((\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} \boldsymbol{a},(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1}(\boldsymbol{b}-\boldsymbol{a})\right) .
$$

Therefore, let $\gamma:=\sqrt{(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1}(\boldsymbol{b}-\boldsymbol{a})}$. The rejection region is

$$
\left\{\boldsymbol{y} \in \mathbb{R}^{d}, \quad(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1}(\boldsymbol{y}-\boldsymbol{a}) \geq \gamma F^{-1}(1-\alpha)\right\}
$$

where $F^{-1}(\cdot)$ denotes the quantile of the standard normal distribution.
Solution 2.3: again, let us define the rejection region

$$
R=\left\{\boldsymbol{y} \in \mathbb{R}^{d}, \quad(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} Y>\eta\right\}
$$

The type I error associated with the threshold η is

$$
\mathbb{P}\left((\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1}(Y-\boldsymbol{a})>\eta-(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} \boldsymbol{a} \mid X=0\right)
$$

and its type II error is

$$
\mathbb{P}\left((\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1}(Y-\boldsymbol{b}) \leq \eta-(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} \boldsymbol{b} \mid X=1\right)
$$

It follows from the requirement that the two errors are equal

$$
\eta-(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} \boldsymbol{b}=-\eta+(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} \boldsymbol{a}
$$

that is

$$
\eta=\frac{1}{2}(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1}(\boldsymbol{b}+\boldsymbol{a})
$$

Solution 2.4: it suffices to look at the type I error, which can be written as

$$
\mathbb{P}\left((\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1} N>\frac{1}{2}(\boldsymbol{b}-\boldsymbol{a})^{T} \Sigma^{-1}(\boldsymbol{b}-\boldsymbol{a})\right)=1-F\left(\frac{\gamma}{2}\right)
$$

Hence, the stronger the $S N R$, the smaller the error.

