
Exercise 1 - Answers to Q4

1. Show that E|X| < ∞

The assumption implies that for any ε ∈ (0, c), both EeεX and Ee−εX are finite. As a result,

Eeε|X| = EeεX1X≥0 + Ee−εX1X<0 ≤ EeεX + Ee−εX < +∞. (1)

Choose a sufficiently large M = M(ε) > 0 so that for all |x| > M , we have eε|x| ≥ |x|. It
follows

E|X| = E[|X|1|X|≤M ] + E[|X|1|X|>M ]

By definition the first term is smaller than M . By our choice of M , the second term is
smaller than Eeε|X|, which by Eq. (1) is finite. In summary E|X| < ∞.

2. Find the k-th derivative of ψ(λ) = EeλX

The first derivative is by definition d
dλ
EeλX . If we could exchange order of differentiation

w.r.t. λ and expectation w.r.t. X (e.g. integration w.r.t. its density), then the result would
be E[XeλX ]. Let us now formally prove that this indeed can be done. A similar result holds
for higher order derivatives. Finally, note that at λ = 0, ψ′(0) = EX and similarly the k-th
derivative ψ(k)(0) = E[Xk], hence the name moment generating function.

To this end, recall the formal definition of the derivative

d

dλ
EeλX = lim

h→0

E
(
e(λ+h)X − eλX

)

h
= lim

h→0
E

(

eλX ehX − 1

h

)

.

We will show that the limit exists by invoking the dominated convergence theorem.

Theorem 1. Let (Zn)n≥1 be a sequence of real-valued random variables. Suppose that the
sequence converges point-wise to another random variable Z∞ and that there exists an inte-
grable random variable Y such that |Zn| ≤ Y for all n. Then Z∞ is integrable and satisfies

lim
n→∞

EZn = EZ∞.

Let us take an arbitrary sequence of real numbers (hn)n≥1 tending to zero. If

sup
n

∣
∣
∣
∣e

λX ehnX − 1

hn

∣
∣
∣
∣

can be bounded by an integrable random variable, we can apply the theorem to show that
the limit exists and is

d

dλ
EeλX = E

(
XeλX

)
.
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For a fixed λ ∈ (−c, c), let us choose an H > 0 satisfying |λ| + 2H < c. Now for any x ∈ R
and any h ∈ (−H,H), we have

∣
∣
∣
∣
ehx − 1

h

∣
∣
∣
∣ ≤

∣
∣
∣
∣
1

h

∫ h

0

xesxds

∣
∣
∣
∣ ≤ |x|e|hx| ≤ |x|eH|x|.

Again, we can choose an interval [−M,M ] outside of which the bound |x|eH|x| ≤ e2H|x| holds.
It results in the following uniform bound

|x|eH|x| ≤ MeHM1|x|≤M + e2H|x|1|x|>M ≤ MeHM + e2H|x|.

Putting pieces together, we obtain

sup
|h|<H

eλX

∣
∣
∣
∣
ehX − 1

h

∣
∣
∣
∣ ≤ e|λX|(MeHM + e2H|X|).

This is the desired upper bound because in view of the previous question, we know Ee(2H+|λ|)|X| <
+∞ and Ee|λX| < +∞. Higher order derivatives can be proved in a similar manner.

3. Prove that E[eλ(X−EX)] ≤ esλ2

Consider the function g(λ) = lnE[eλ(X−EX)] = lnE[eλX ] − λEX. Following the previous
question, let us take the first derivative

g′(λ) =
E[XeλX ]

E[eλX ]
− EX.

As a result, we find that both g(0) = g′(0) = 0. Since its second derivative g(2)(λ) is
continuous and finite in the vicinity of the origin, say, [−c/2, c/2], we deduce, from a Taylor
expansion of g around λ = 0 that there exists some constant s such that

g(λ) ≤ sλ2

for any λ ∈ [−c/2, c/2]. Hence the result.

4. Find an upper bound on P(X ≥ EX + t)

For any λ ∈ (0, c/2]

P(X ≥ EX + t) = P(λ(X − EX) ≥ λt) = P(eλ(X−EX) ≥ eλt) ≤
E[eλ(X−EX)]

eλt
≤ esλ2−λt

The first inequality is Markov’s inequality, and the second is using the result of question 3.
Since we want a tight bound, we’ll minimize the exponent under constraint λ ∈ R+. Note
that the exponent is a quadratic function of λ which achieves its minimum at

λ =
t

2s
.
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If t ∈ [0, sc], the minimum is attained in the interval [0, c/2], which results in

P(X ≥ EX + t) ≤ esλ2−λt = e−
t2

4s

And if t > sc, the constraint is active, meaning that the minimum is achieved at λ = c
2

P(X ≥ EX + t) ≤ esλ2−λt = e
sc2

4
− ct

2 ≤ e−
ct
4

where the last inequality uses the condition t > sc.

5. Prove a one-sided concentration inequality for χ2
m

The expectation of a χ2
m distributed random variable Z is

EZ = E

[
m∑

i=1

X2
i

]

=
m∑

i=1

E[X2
i ] = m.

We use E[X4
i ] = 3 to calculate its second moment

EZ2 = E

[
m∑

i=1

m∑

j=1

X2
i X2

j

]

=
m∑

i=1

E[X4
i ] +

∑

i 6=j

E[X2
i X2

j ] = 3m + m(m − 1) = 2m + m2.

Therefore, we deduce its variance

E[Z2] −
(
E[Z]

)2
= 2m + m2 − m2 = 2m.

Now, to prove the desired concentration inequality, we calculate Z’s moment generating
function

∀s ∈ (−∞, 1/2), EesZ = (1 − 2s)−m/2

in order to apply Markov’s inequality

P
(
Z2 − m ≥ 2m(t +

√
t)
)
≤
Ees(Z2−m)

e2sm(
√

t+t)
=

e−ms(1 − 2s)−m/2

e2sm(
√

t+t)
.

We can then optimize over s ∈ (−∞, 1/2) to obtain the desired bound

P
(
Z2 − m ≥ 2m(t +

√
t)
)
≤ min

s∈(−∞,1/2)
e−2sm(

√
t+t)−ms(1 − 2s)−m/2 =

(1 + 2t + 2
√

t)m/2

em(t+
√

t)
≤ e−mt

where the minimum in the first inequality is achieved at

s∗ =

√
t + t

1 + 2(
√

t + t)
∈ [0, 1/2).
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