Exercise 1 - Answers to Q4

1. Show that E|X| < oo

The assumption implies that for any € € (0, c), both Ee“* and Ee~*% are finite. As a result,
el = BeX 1 x50 + Be X1y < Ee™X + Be™¥ < +o0. (1)

Choose a sufficiently large M = M(e) > 0 so that for all |z| > M, we have el > |z|. Tt
follows

E|X| = E[|X |1 xj<pm] + E[| X1 x> 0]

By definition the first term is smaller than M. By our choice of M, the second term is
smaller than EeX! which by Eq. (1) is finite. In summary E|X| < oo.

2. Find the k-th derivative of ¥()\) = EeM

The first derivative is by definition %]Ee*x. If we could exchange order of differentiation
w.r.t. A and expectation w.r.t. X (e.g. integration w.r.t. its density), then the result would
be E[Xe*]. Let us now formally prove that this indeed can be done. A similar result holds
for higher order derivatives. Finally, note that at A = 0, ¢/(0) = EX and similarly the k-th
derivative 9(*)(0) = E[X*], hence the name moment generating function.

To this end, recall the formal definition of the derivative

d_ x . ]E(e(“h)x—e’\X) e /\Xth—l
e = lim 7 = (e —— ).

We will show that the limit exists by invoking the dominated convergence theorem.

Theorem 1. Let (Z,),>1 be a sequence of real-valued random variables. Suppose that the
sequence converges point-wise to another random variable Z., and that there exists an inte-
grable random variable Y such that |Z,| <Y for all n. Then Zy, is integrable and satisfies

lim EZ, = EZ..

n—oo

Let us take an arbitrary sequence of real numbers (h,),>1 tending to zero. If

e
sup |e

n

hnX 1
hy,

can be bounded by an integrable random variable, we can apply the theorem to show that
the limit exists and is

%Ee“ = E (XeMY).



For a fixed A € (—c,¢), let us choose an H > 0 satisfying |A\| + 2H < ¢. Now for any = € R
and any h € (—H, H), we have

hr _ 1 1 h
‘ W ‘ﬁ ‘E/o xre*ds
Again, we can choose an interval [—M, M] outside of which the bound |z|efl*] < e2H12| holds.
It results in the following uniform bound

< |zlelh®! < |zlefllel,

‘x’eH\ﬂ < MeHM1|x\§M+€2H|x|1|m|>M < MGHM—FBQH'I‘.
Putting pieces together, we obtain

e
sup eM

|h|<H

< e|/\X|(M6HM +€2H|X|).

hX_ll

This is the desired upper bound because in view of the previous question, we know Ee@H+RAIX] <

+00 and EePX! < +00. Higher order derivatives can be proved in a similar manner.

3. Prove that E[e*¥EY)] < oSN

Consider the function g(A) = InE[e**~EX] = InE[e*] — AEX. Following the previous
question, let us take the first derivative

E[X e ]

g\ = Fo ~EX

As a result, we find that both g(0) = ¢/(0) = 0. Since its second derivative g () is
continuous and finite in the vicinity of the origin, say, [—c/2, ¢/2], we deduce, from a Taylor
expansion of g around A = 0 that there exists some constant s such that

g(A) < sN?

for any A € [—¢/2,¢/2]. Hence the result.

4. Find an upper bound on P(X > EX +¢)

For any A € (0, ¢/2]
P(X > EX +1t) = PONX —EX) > M) = P(XEEX) > oMy < ——— < N

The first inequality is Markov’s inequality, and the second is using the result of question 3.
Since we want a tight bound, we’ll minimize the exponent under constraint A € R,. Note
that the exponent is a quadratic function of A\ which achieves its minimum at



If ¢t € [0, sc], the minimum is attained in the interval [0, ¢/2], which results in

+2

P(X >EX +t) <N M=e 5

<

And if £ > sc, the constraint is active, meaning that the minimum is achieved at A\ = £

ct

sc2 ct
P(X >EX +t) < e NM=¢T"2 <%

where the last inequality uses the condition ¢ > sc.

5. Prove a one-sided concentration inequality for \?,

The expectation of a x2, distributed random variable Z is

ZXE] = Z]E[XE] = m.

i=1

EZ=E

We use E[X}'] = 3 to calculate its second moment

m

Z inXf] = iE[Xf] + ZE[X?XJQ] =3m+m(m —1) =2m +m>.

i=1 i)

EZ? =E

i=1 j=1
Therefore, we deduce its variance
E[Z%] — (IE[Z])2 =2m +m? —m? = 2m.

Now, to prove the desired concentration inequality, we calculate Z’s moment generating
function

Vs € (—00,1/2), Ee’? = (1 —2s)"™/?
in order to apply Markov’s inequality

- EGS(ZQfm) B efms(l _ 28)7m/2
= e2sm(Vitt) e2sm(Vi+t)

P(Z% —m > 2m(t + V1))

We can then optimize over s € (—00,1/2) to obtain the desired bound

142t +2/1)™/?
P(Z2 —m > 2m(t + V1)) <  min e 2mVEDmms (] _9g)7m/2 — (+2t+2v1) e

s€(—00,1/2) em(t—i-\/i) -

where the minimum in the first inequality is achieved at
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