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Liver lesion segmentation is a key module for an automated liver disease diagnosis system. Numerous methods

have been developed recently to produce accurate 3D binary lesion masks for CT scans. From the clinical

perspective, it is thus important to be able to correctly parse these masks into separate lesion instances in

order to enable downstream applications such as lesion tracking and characterization. For the lack of a better

alternative, 3D connected component analysis is often used for this task, though it does not always work,

especially in the presence of confluent lesions. In this paper, we propose a new method for parsing 3D binary

lesion masks and an approach to evaluating its performance. We show that our method outperforms 3D

connected component analysis on a large collection of annotated portal-venous phase studies.
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1 INTRODUCTION
Computed Tomography (CT) scans with contrast are a common medical imaging technique for

liver disease diagnosis. Automating their analysis thus helps facilitate clinical workflow. To achieve

this goal, it is important to be able to segment lesion instances accurately because its performance

directly impacts downstream applications such as lesion tracking and characterization. In recent

years, many lesion segmentation methods have been developed. Most of them [2, 3, 6, 7, 10–14] cast

the problem as a binary classification task. Specifically, for a CT volume, they determine whether its

individual voxels belong to a liver lesion and produce a 3D binary lesion mask as a result. Despite

their impressive performances, accurate binary masks by themselves are often not enough for the

clinical purposes, because in general, they cannot answer such important questions as: How many

lesions have been found? How big are they?

To bridge this gap, a post-processing step is needed to parse a 3D binary lesion mask into

separate lesion instances. Thanks to its simplicity, 3D connected component analysis (CCA) is

usually employed to this end [3]. Unfortunately, it does not always work, especially in the presence

of confluent lesions. It is because, due to their proximity, the segmentation masks of confluent

lesions generally form a single connected component. As a consequence, even when these lesions

are perfectly segmented, CCA is unable to distinguish them.

This motivates us to propose a new post-processing method to parse 3D binary lesion masks. To

the best of our knowledge, it represents the first attempt at substituting CCA for this task. Our

method runs in two stages. First, it splits a binary lesion mask slice-wise into separate 2D lesion
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cross-sections. Then it generates 3D lesion instances by grouping the obtained lesion cross-sections

across slices. To evaluate its performance, we introduce a new metric that allows us to demonstrate

that our method can better distinguish confluent lesions than CCA on a large collection of annotated

liver lesion data.

The rest of this paper is organized as follows. First, we describe our data and method. Next we

present the performance evaluation protocol and validate our approach with experimental results.

2 DATA AND METHOD
2.1 Data
Our data is a private set of 2511 portal-venous liver studies of adult patients collected from several

sources, ranging from broadly distributed tertiary care hospitals to teleradiology services of a

number of smaller hospitals. They were split into two mutually exclusive sets for training and

testing, leading to a total of 1934 and 577 CT volumes respectively. All of them were annotated

by a team of radiologists, who reviewed radiology reports and drew contours for each focal liver

finding present in the images. It resulted in 10356 and 3175 ground truth 3D lesions in the two

datasets respectively.

2.2 Method
Consider a CT volume and an accompanying 3D binary lesion mask of the same size. We are

interested in the following question: how many distinct 3D lesions are there covered by the mask
and what are their spatial extents? Clearly, the mask can help locate lesions only if it is of good

quality. Thanks to the recent works [3, 6, 7, 10–14], we may assume the availability of a binary

segmentation algorithm able to consistently produce accurate masks that align closely with the

ground truth lesion contours.

Fig. 1. Illustration of the proposed post-processing algorithm. Step 1, the input binary lesion mask is processed
slice-wise to split up partially merging lesion bubbles, as shown in the top slice on the left-most figure. Step 2,
the resulting 2D lesion cross-sections are grouped across slices to form 3D lesion instances. For visualization,
we assigned different colors to different 2D and 3D lesions.

Because of its voxel-to-voxel connectivity, CCA is sensitive to noise. As a matter of fact, for

some binary masks, it is possible to merge multiple separate connected components into one

single connected component by flipping the label of just a few voxels. For this very reason, CCA

can successfully parse a binary lesion mask only if 1) confluent lesions are absent and 2) the

employed binary segmentation algorithm creates one 3D connected component per detected lesion.

Unfortunately, these conditions are too restrictive and do not hold for real life studies in general.

In order to translate a binary lesion mask into separate 3D lesions, rather than relying on

the voxel-to-voxel connectivity, we take 2D lesion cross-sections as the basic building blocks.

Specifically, our algorithm proceeds in two steps: 1) slice-wise lesion mask splitting and 2) z-wise

cross-section connection. The first step partitions a 3D binary lesion mask into a set of 2D lesion

cross-sections located across slices, which are then grouped by the second step to result in 3D

lesion instances. See Fig.1 for an illustration of its operations on a toy example.
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Let us now describe the two steps in details.

2.2.1 Slice-wise lesion mask splitting. This step aims to identify distinct 2D lesion cross-sections

present in each slice of a binary lesion mask. To this end, we use the popular watershed algorithm

[1]. Since this algorithm is sensitive to noise and may lead to over-segmentation [5], we constrain

its behaviour by taking into account some lesion shape prior. Specifically, based on the observation

that most biological lesions are of a bubble shape and that an abdominal CT scan typically has the

same spatial resolution along its x and y axes, we developed a scheme to coarsen the watershed

partition to result in roughly circular sub-regions.

To simplify the presentation, let us consider the synthetic binary lesion mask in Fig.2(a). To

extract all the 2D lesions covered under this mask, ideally we should set one center point per 2D

lesion to seed the watershed algorithm. It would then partition the mask into sub-regions, each of

which has exactly one seed point sitting inside. The resulting sub-regions could be interpreted as

the estimated 2D lesions.

Although we do not know what the 2D lesions are, it is possible to locate their center points

approximately. To do so, we compute the 2D mask’s distance transform and take its local maxima

because the 2D lesion centers generally correspond to the points the most distant from their

segmented boundaries. Unfortunately, in this way, we may accidentally create more approximate

center points than there are 2D lesions. In fact, as shown in Fig.2(d), as soon as a mask presents

some geometric irregularities, clusters of local maxima tend to emerge from its distance transform,

which causes the watershed algorithm to over-segment the 2D lesions.

(a) (b) (c) (d)

Fig. 2. Direct application of the watershed algorithm on (a) a synthetic mask in shape of two partially merging
circles and (c) a slightly altered mask. For (a), it results in (b) two local maxima and their corresponding
sub-regions separated by the vertical dashed line segment. For (c), three local maxima (two red and one blue)
emerge, leading to an over-segmentation (d) of the larger 2D lesion on the left.

To correct this behavior, we introduce a hypothesis testing step to coarsen a watershed partition

when needed. To explain how it works, consider the local maxima 𝐴 and 𝐵 in Fig.2(b). We posit

the hypothesis that they are the centers of two distinct circular 2D lesions with radius 𝑑𝐴 and 𝑑𝐵
respectively. This simplified setup allows us to derive an analytical measure𝑚 : (𝐴,𝑑𝐴, 𝐵, 𝑑𝐵) ∈
(R × R+)2 ↦→ R+ to assess how much the two 2D lesions overlap. We accept the hypothesis if their

overlap is small, i.e.𝑚(𝐴,𝑑𝐴, 𝐵, 𝑑𝐵) < 𝑡 for some prefixed threshold 𝑡 . Otherwise, we consider the

local maxima as two approximate center points of the same 2D lesion andmerge their corresponding

watershed sub-regions. Such is the case for the two red local maxima in Fig.2(d).

For this scheme to work, the measure𝑚 needs to reflect the closeness of two circles. In this

work, we set it to
|𝑆𝐴∩𝑆𝐵 |

min( |𝑆𝐴 |, |𝑆𝐵 |) where 𝑆𝑥 denotes the 2D ball centered on 𝑥 with radius 𝑑𝑥 and the

operator | · | returns the size of its argument. For the threshold 𝑡 , we ran empirical evaluations on

the training data for its determination (see Section 3.2).

2.2.2 Z-wise cross-section connection. A 2D lesion represents a cross-section of a 3D lesion. In this

step, we are interested in recovering the 3D lesions which best explain the obtained 2D lesions. To
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do so, let us consider two arbitrary 2D lesions located on two adjacent slices. We denote them 𝐿𝐴
and 𝐿𝐵 . Do they belong to the same 3D lesion? This question is of great importance here because the

ability to answer it correctly for all the 2D lesion pairs allows us to group them into separate 3D

lesion instances using e.g. the Union-Find algorithm [4]. Moreover, such a formulation essentially

casts the problem in the binary classification setting so that we can make explicit use of our

annotated data.

A biological lesion is typically smooth in shape. As a result, the event that 𝐿𝐴 and 𝐿𝐵 are the

cross-sections of the same 3D lesion is more likely if they 1) intersect significantly when projected

onto the same xy-plane and 2) are sufficiently similar in size. Therefore, in order to assess its

conditional probability, we created a logistic model with the following features:

𝑟0 (𝐿𝐴, 𝐿𝐵) =
|𝜋 (𝐿𝐴) ∩ 𝜋 (𝐿𝐵) |
min( |𝐿𝐴 |, |𝐿𝐵 |)

, (1)

𝑟1 (𝐿𝐴, 𝐿𝐵) =
|𝜋 (𝐿𝐴) ∩ 𝜋 (𝐿𝐵) |
max( |𝐿𝐴 |, |𝐿𝐵 |)

(2)

where 𝜋 maps a set 𝐿 of 3D points to {(𝑥,𝑦, 0), (𝑥,𝑦, 𝑧) ∈ 𝐿}. These features help measure the

relative size of the overlap of the two projected 2D lesions. Both are by design symmetric in their

arguments and therefore invariant under reversal of the slice order.

Fig. 3. The ROC (left) and Precision-Recall (right) curves of the trained logistic model for z-wise cross-section
connection on our test data.

From our training dataset, we derived a total of 34578 2D lesion pairs. A pair is said to be negative

if its elements belong to the same 3D lesion. It is positive otherwise. Positive pairs accounted

for 5.1 percent of the training pairs. Fig.3 plots the Receiver Operating Characteristic (ROC) and

Precision-Recall curves of our trained model on 12450 2D lesion pairs extracted from the test dataset

with a similar imbalance ratio.

3 EXPERIMENTS
3.1 Performance evaluation protocol
To explain our evaluation protocol, we need some notations. Let 1𝐿 (𝑥) be the indicator function
of a 3D lesion 𝐿. For a CT volume with 𝑛 separate lesions L = {𝐿𝑖 | 𝑖 = 1, . . . , 𝑛}, we represent its
ground truth lesion mask by

∑𝑛
𝑖=1 𝑖 × 1𝐿𝑖 (𝑥). If we apply a permutation 𝜎 to the 𝑛 lesion indices,

the mask becomes

∑𝑛
𝑖=1 𝜎 (𝑖) × 1𝐿𝜎 (𝑖 ) (𝑥). Clearly, when binarized, both ground truth masks lead to

the same

∑𝑛
𝑖=1 1𝐿𝑖 (𝑥). As a result, from the binarized ground truth mask, the best one can do is to
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recover one of the 𝑛! permuted ground truth lesion masks. The lesion index order is not relevant

for our purposes, since all the permuted lesion masks distinguish the same set of 3D lesions.

To study the binary mask parsing quality in a general setting, consider the CT volume with

ground truth L. After analyzing this volume, a lesion segmentation algorithm produces a binary

lesion mask. Let 𝐶 be one of its 3D connected components. We denote the set of ground truth

lesions which intersects with 𝐶 by

L𝐶 = {𝐿𝑖 | 𝐿𝑖 ∩𝐶 ≠ ∅, 1 ≤ 𝑖 ≤ 𝑛}. (3)

We call 𝐶 a confluent detection if |L𝐶 | > 1. It is an isolated detection if |L𝐶 | = 1. Otherwise i.e.

|L𝐶 | = 0, it is a false detection. We now introduce our parsing quality metric.

Definition 1. Consider a fixed pair (𝐶,L𝐶 ). Let P = {𝑃 𝑗 | 𝑗 = 1, . . . ,𝑚} be a partition of 𝐶 . We
measure its quality by

𝑞(P) = max

𝜙

∑
(𝐿,𝑃 ) ∈L𝐶×P

𝑑 (𝐿, 𝑃)𝜙 (𝐿, 𝑃) (4)

where 𝑑 (𝐿, 𝑃) denotes the dice coefficient 2|𝐿 ∩ 𝑃 |/( |𝐿 | + |𝑃 |) and 𝜙 a one-to-one mapping such that
𝜙 (𝐿, 𝑃) equals 1 if 𝜙 matches the pair (𝐿, 𝑃) and 0 otherwise.

Clearly, the metric is positive valued. A higher metric value indicates a better parsing quality.

Specifically, for an isolated detection, there can be one and only one matched pair. As a result, the

metric simply reduces to the pair’s dice coefficient. For a confluent detection 𝐶 , a partition P has a

higher metric value if it allows to match more ground truth lesions in L𝐶
with greater pairwise

dice coefficients. Finally, the metric value is zero if and only if 𝐶 is a false detection. Since it is

the lesion segmentation algorithm that is responsible for false detections, we ignore them for the

parsing quality evaluation.

The metric can be computed numerically because Eq.(4) is a linear sum assignment problem and

has efficient solutions [8, 9]. Note also that, due to its search for an optimal one-to-one mapping,

the metric value is invariant to the lesion index permutation in both L and P.

To compare the performance of our algorithm against that of CCA, we propose to separate isolated

and confluent detections. It is because CCA generally does well on isolated detections. However, it

invariably makes mistakes on confluent detections. To quantify their relative performance on a

given detection, we compute the quality metric for both our algorithm and CCA and refer to their

ratio as the parsing quality improvement. Our algorithm outperforms CCA when the improvement

is greater than 1.

3.2 Results
We call a lesion segmentation model the oracle if it always outputs binarized ground truths. Since a

real lesion segmentation model is trained to imitate the oracle, we first used our algorithm to parse

the binarized ground truths. With the oracle, an isolated detection is the same as an isolated lesion

whereas a confluent detection is a connected component consisting of more than one confluent

lesions.

In our test data, in addition to 2410 isolated lesions, there are 198 oracle confluent detections

which collectively account for 765 confluent lesions. We processed the confluent detections and

computed their parsing quality improvement. According to their cumulative distribution function

(CDF) in Fig.5(a), around 79 percent are strictly greater than 1, which means that our algorithm

strictly outperformed CCA on the corresponding confluent detections.We show one such example in

Fig.4. For the remaining confluent detections, our algorithm erroneously agreed with CCA because

it either failed to distinguish 2D lesions in its slice-wise mask splitting step (i.e. Section 2.2.1) or
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Slice 0 GT Slice 0 ours Slice 0 CCA

Slice 1 GT Slice 1 ours Slice 1 CCA

Slice 2 GT Slice 2 ours Slice 2 CCA

Fig. 4. Three consecutive cross-sections of a few ground truth (GT) 3D lesions in different colors are shown in
the left column. We parsed the corresponding binarized GT lesion mask with our algorithm (middle column)
and CCA (right column). Our algorithm succeeded in distinguishing all the confluent lesions. CCA failed
to do so. Specifically, CCA lumped seven GT lesions into a single connected component because they have
voxel-to-voxel connections either in the same slice or across adjacent slices.

mistakenly grouped separate lesion cross-sections on adjacent slices in the z-wise connection step

(i.e. Section 2.2.2). See Fig.6(e)(f) for an example.

For oracle isolated detections, the parsing quality improvement is the same as our algorithm’s

parsing quality. It is because for such detections, CCA’s parsing quality is always equal to 1 as CCA

keeps them as they are. We computed the improvements for all the isolated lesions. From their CDF
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in Fig.5(b), we deduce that our algorithm made mistakes on 3.7 percent of these lesions. Most of

them possess irregular cross-sectional shapes, thereby inducing erroneous in-plane splits by our

algorithm. See Fig.6(a)(b)(c)(d) for an illustration.

In order to see whether these results carry over to the binary masks from a real lesion segmen-

tation model, we repeated the same experiment with a binary lesion segmentation denseNet [7]

trained on our training data. For the isolated detections, our algorithm and CCA again yielded simi-

lar parsing performance. See the CDF of their parsing quality improvements in Fig.5(d). Unlike with

the oracle, here the isolated detections generally do not coincide with their matched ground truth

lesions, which allowed the parsing quality improvement to exceed 1. For the confluent detections,

the segmentation model did not always produce tight masks. For example, for the two ground truth

confluent lesions marked in Fig.6(g), it created a loose segmentation mask in the shape of an ellipse

i.e. Fig.6(h). As a result, our algorithm failed to distinguish them. Nonetheless, as shown by the

CDF of the quality improvements in Fig.5(c), it still did better than CCA on about 70 percent of the

confluent detections.

4 CONCLUSION
In this paper, we have presented a novel scheme for efficiently parsing a 3D binary lesion segmenta-

tion mask into 3D lesion instances. We have also introduced a parsing quality metric to demonstrate

that our algorithm is better at parsing confluent detections than 3D connected component analysis.
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(a) oracle confluent detections (b) oracle isolated detections

(c) algorithm confluent detections (d) algorithm isolated detections

Fig. 5. Performance comparison of our algorithm and CCA on isolated and confluent detections. (a) For the
oracle confluent detections, our algorithm is strictly better than CCA on around 79 percent of them. (c) On
the binary masks produced by a real lesion segmentation algorithm, this percentage remains at about 70
percent. On the other hand, for the isolated detections by both (b) the oracle and (d) a real segmentation
algorithm, our algorithm and CCA yield similar performances since most of the quality improvements are
equal to 1.
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(a) GT (b) our parsing (c) GT (d) our parsing

(e) GT (f) GT (g) GT (h) loose mask

Fig. 6. Failure cases. (a)(c) are the ground truth lesion cross-sections. CCA did not modify them. Our algorithm
divided them to produce circular sub-regions, leading respectively to (b)(d). In another scenario, across two
adjacent slices (e)(f), our algorithm connected two lesion cross-sections (green and yellow) because they are
located at similar in-plane positions and have similar area. However they belong to separate lesions according
to the ground truth. Finally, for the two ground truth lesions in (g), a real segmentation algorithm created a
loose segmentation mask in the shape of an ellipse (h). Our parsing algorithm did not split the mask, resulting
in an error.
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