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Abstract Detecting edges in noisy images is a fundamen-
tal task in image processing. Motivated, in part, by various
real-time applications that involve large and noisy images, in
this paper we consider the problem of detecting long curved
edges under extreme computational constraints, that allow
processing of only a fraction of all image pixels.We present a
sublinear algorithm for this task,which runs in two stages: (1)
amultiscale scheme to detect curved edges inside a few image
strips; and (2) a tracking procedure to estimate their extent
beyond these strips. We theoretically analyze the runtime
and detection performance of our algorithm and empirically
illustrate its competitive results on both simulated and real
images.
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1 Introduction

Edge detection is a fundamental task in image analysis. Since
the seminal works of Marr and Hildreth [21] and Canny [5],
numerous edge detection algorithms have been proposed.
Traditional methods mainly focused on step edges and relied
on discretized differentiation operators for their detection
[6,9,12]. In contrast, to trace semantically meaningful edges
in natural images with significant texture content, several
learning-based algorithmswere developed over the past years
[2,8,16].

In various applications, thousands of large and noisy
images are acquired per hour and need to be quickly ana-
lyzed. Examples include high-throughput industrial imaging
inspection systems, and cameras in either cars or autonomous
drones, that detect lanes, power lines, to avoid crashes. The
requirement to analyze many images in real time may limit
the transfer from memory to CPU, or the analysis in the
CPU, to only a small fraction of all image pixels. This raises
an interesting statistical and computational question at the
focus of ourwork:Howwell can edge detection be performed
under such restrictive sublinear runtime constraints?

Even though the field of sublinear time algorithms is quite
developed, see for example the review [26], relatively few
sublinear methods have been proposed for image process-
ing tasks. Notable exceptions include the early works on
randomized and probabilistic Hough transforms [13,14,32].
More recent ones include [15,24,28]which applied sublinear
property testing methods to binary images, and [17] which
developed a sublinear time algorithm for approximate tem-
plate matching in natural images. In a more general context
of sparse signal recovery, in particular from large sensor
networks, [10,31] developed adaptive sequential sampling
strategies, where an initial portion of the sampling budget
is used to crudely measure the signal, and only its statisti-
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cally significant parts are kept formore refinedmeasurements
and analysis. These schemes can recover signals with sig-
nificantly reduced communication and energy consumption.
Closely related to our work is the paper by Horev et al. [11],
who focused on detection of long straight edges in sublinear
time. They proved that under a certain worst-case setting,
sampling whole image columns is an optimal scheme. They
developed a strip-based edge detection algorithm that con-
sists of two main steps: (1) detection of straight edges inside
few strips of the input image; (2)matching detections in adja-
cent strips and validating them.

In this work, we extend the approach of Horev et al. [11]
to detect long curved edges in sublinear time. Our main con-
tributions are the development of a fast multiscale algorithm
to detect curved edges in image strips, a tracking algorithm
to trace edges between strips and a theoretical analysis of
the complexity and statistical accuracy of our method. A key
insight of our work is that if the input image contains few
long edges, there is no need to process all of its pixels, hence
potentially leading to significant savings.

Following a precise formulation of our problem setup in
Sect. 2, we first give a high-level description of our approach
in Sect. 3. Motivated by [11], we also adopt their strip-based
approach for the initial detection step. Their method, how-
ever, is not directly applicable to detecting curved edges, and
there are two significant obstacles that need to be addressed.
First, as our goal is to detect faint edges in possibly very
noisy images, the strips considered need to be wide. In such
wide strips, the curved edges cannot be well approximated
by linear functions as done in [11]. Secondly, since edges are
curved they cannot be easily matched in adjacent strips.

To handle the first problem, we approximate curved edges
by lowdegree polynomials.As this significantly increases the
set of candidate curves, a key question is whether processing
this larger set is still compatible with the sublinear complex-
ity constraint. We study this question in Sect. 4, under the
assumption that image edges are smooth. We construct a
finite set of polynomials so that any curved but sufficiently
smooth edge can be accurately approximated inside the strip
by one of these polynomials. We show that for a not-too-
wide strip, this set is sufficiently small to allow a sublinear
runtime. Specifically, in a strip of O(nκ) columns in an n×n
image, the number of polynomials in this set is

⎧
⎨

⎩

O(n1+κ) κ ∈ [0, 1
2 ]

O(n3κ) κ ∈
(
1
2 ,

5
8

)
.

(1)

Furthermore, thanks to the efficient line integral algorithm
[4], when these polynomials are substituted by their con-
tinuous piecewise linear interpolants (see Fig. 1), detecting
curved edges in a strip ofwidthO(nκ ) columns can be carried
out with time complexity

Fig. 1 a A piecewise constant image with two curved step edges and
three equidistant strips. b A zoom-in of the leftmost strip. The upper
edge is well approximated by both a quadratic polynomial (not shown)
and its piecewise linear interpolant, composed of four equal-length seg-
ments (in green) (Color figure online)

⎧
⎨

⎩

O(n1+κ log n) κ ∈ [
0, 1

2

]

O(n4κ−1/2) κ ∈
(
1
2 ,

5
8

)
.

(2)

Hence, as long as the image strip has width O(nκ) with κ <

5/8, asymptotically in n, curved edge detection is possible

in time sublinear in the image size n2.
It is interesting to compare this result to [11]. There,

detecting straight edges in a strip of width O(nκ) was
possible in sublinear time for any κ ∈ (0, 1), requiring
O(n1+κ log n) operations. For curved edges, in contrast, not
only is there an upper bound on the strip width, but also for
κ > 1/2 processing it takes significantly more operations,
compared to straight edge detection.

The strip-based detection approach described above relies
heavily on an a-priori assumption of the edge smoothness. In
particular, it may miss strong but wiggly edges. To make our
algorithm robust against such smoothnessmis-specifications,
in Sect. 5.1 we develop a scheme to detect curved edges in
several sub-strips of different scales. Furthermore, we prove
that under suitable conditions this scheme produces well-
estimated edges with high probability.

Next, we consider the problem of tracing the edges outside
of the narrow strips in which they were detected. Horev et al.
[11] assumed straight edges, which enabled them to easily
match detections across adjacent strips, and estimate the end
location of detected edges. Their approach is not applicable
to curved edges. In Sect. 5.2, we present an iterative track-
ing procedure which extends the edges detected in the strips
to the rest of the image by sequentially exploring an adap-
tively determined sequence of small windows. In Sect. 5.3,
we show that with a window width O(nκ), our tracking pro-
cedure costs at most O(n2κ∨1) operations for κ ∈ [0, 5

8 ).
Hence, tracking has negligible computational cost compared
to the detection step. Combining our analysis of the detection
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and tracking procedures allows us to describe the trade-off
between the overall computational complexity of our algo-
rithm and its minimal detectable edge saliency (Lemma 5).

Finally, to successfully apply our algorithm to real images,
in Sect. 5.4 we address some practical issues such as edge
localization and nonmaximal suppression. We present in
Sect. 6 several illustrative results of our algorithm and run-
time comparison with the Canny edge detector [5] and the
line segment detector (LSD) [29,30], which are both fast
methods with linear time complexity. We conclude the paper
with a discussion and future work in Sect. 7.

2 Problem Setup

In this work, we develop an algorithm and accompanying
theory for detecting curved edges in noisy images, in sublin-
ear time. While our algorithm can be applied to arbitrarily
sized images, for clarity of the exposition and the theoretical
analysis, we assume that the observed images are square and
contain step edges. Specifically, consider the following ideal-
ized image formation model. Let uc be a piecewise constant
function defined on the unit square [0, 1]2. The boundaries
between adjacent constant-valued regions are delineated by
long, smooth and potentially curved edges. The observed
n × n noisy image U is the result of impulse sampling of uc
on a regular lattice, corrupted by additive zero mean inde-
pendent Gaussian noise: for 1 ≤ i, j ≤ n,

U (i, j) = uc

(
i

n
,
j

n

)

+ ξ(i, j), ξ(i, j) ∼ N (0, σ 2). (3)

For simplicity, we assume the noise variance σ 2 is known.
When unknown, it can be estimated from the observed image
by various methods, see [19,20].

Given the noisy image U , our goal is to detect and local-
ize the step edges in it. Similar to [11], we wish to do it
in time sublinear in the total number of image pixels. How-
ever, unlike this prior work which focused exclusively on
straight edges, we develop an algorithm to detect curved
smooth edges. On the theoretical front, we study its perfor-
mance and establish the trade-off between the overall time
complexity of our algorithm and its minimal detectable edge
saliency.

Before proceeding, we first introduce some notations and
the signal-to-noise ratio (SNR) of a step edge.

Notations For any z ∈ R, (z)+ = max(z, 0), �z� denotes
the largest integer less than or equal to z, whereas �z	 is the
smallest integer larger than or equal to z. For z1, z2 ∈ R,
we write z1 ∧ z2 = min(z1, z2) and z1 ∨ z2 = max(z1, z2).
λ denotes the Lebesgue measure on R. The constant α in
O(nα) is referred to as the growth exponent.With some abuse

of notation, I may denote either an interval on the real line,
[x1, xL ], or the image strip with columns x1, . . . , xL .

From continuous to discrete edges and their SNR Consider
for simplicity an image whose corresponding function uc has
two regions with different intensities, separated by a single
step edge defined by a function f ,

uc(x, y) = μ11y∈( f (x),1]
+ μ21y∈[0, f (x)], ∀(x, y) ∈ [0, 1]2.

According to the model (3), the edge f is dilated to g : x ∈
[0, n] �→ n f (x/n), and in the observed image discretized
to Γ (g) : i ∈ {1, . . . , n} �→ �g(i)�. We denote the edge
contrast by μΓ (g) = |μ1 − μ2|, and its signal-to-noise ratio
(SNR) by μΓ (g)/σ .

3 A Strip-Based Approach

The constraint of a sublinear runtime implies that the edge
detection algorithm can process only a fraction of all image
pixels. To fix the idea, assume that for some κ ∈ [0, 1),
it observes O(n1+κ) out of the n2 image pixels. The first
question is thus which pixels to process?

In [11], a related straight fiber detection problemwas stud-
ied. Under the assumption that an unknown straight fiber
spans the entire imagewidth, it was shown that under aworst-
case scenario, sampling an equal number of pixels in each
of the n image rows is optimal for its detection. The reason
is as follows. Consider a sampling strategy which distrib-
utes its sampling budget, say mn pixels, unevenly across the
image rows. Then there is at least one row with strictly less
than m observed pixels. As a result, this sampling scheme
has lower power for detecting a fiber that passes through pre-
cisely this row. The same analysis carries over to detecting
curved fibers.

Admittedly,what is optimal for detectingfibersmaynot be
the same for detecting edges. Nonetheless, motivated by the
above argument, as in [11] we adopt a strip-based approach
with O(nκ) whole columns. As outlined in Algorithm 1 and
illustrated in Fig. 2, our proposed sublinear time curved edge
detectionmethod consists of twomain steps: (1) detect edges
in a few strips extracted from the input image; (2) track the
detected edges outside the strips.

Pixel responses Most methods to detect step edges are
based on some discrete differentiation operator. Here we use
pixel responses, which for horizontal edges are obtained by
convolving the image with a vertical mask of length 2ω con-
sisting of ω ones and ω values of −1,
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Fig. 2 Curved edge detection on a 1000 × 1000 synthetic noisy image. a Observed noisy image (SNR = 1/2). b Detected edges in the strip
delimited by blue columns. c Output of the first tracking iteration. d Fully tracked edge estimates. e one-pixel-wide sketch of the final output

Algorithm 1 Sublinear Curved Edge Detection
Input: an n × n noisy image
Parameters: noise level,maskwidth, number of strips, detection strip
width, detection false alarm rate, tracking extension width, tracking
false alarm rate.
Step 0: Extract several strips from the noisy image.
Step 1: Detect edges in each of the strips (using detection false alarm
rate).
Step 2: Track the detected edges (using tracking false alarm rate).

R(i, j) = 1√
2ω

j+ω∑

k= j+1

(
U (i, k) −U (i, k − ω)

)
. (4)

For other choices of masks and edge filters, see for example
[23,27]. Clearly if a pixel (i, j) is at a vertical distance of at
least ω pixels from any edge, then ER(i, j) = 0. In contrast,
if there is only one edge g close by, the signal of the pixel
(i, j), defined as |ER(i, j)|, is

|ER(i, j)| = μΓ (g)√
2ω

(
ω − | j − �g(i)�|)+. (5)

In particular, assuming that all image edges are separated
by at least ω pixels, and ignoring boundary effects, the con-
volution (4) creates a signal tube of vertical width 2ω − 1
pixels around each edge g. Inside this tube the signal peaks on
Γ (g) and declines as the vertical distance from it increases.
Clearly, a large value of ω is preferable for edge detection, as
it leads to a stronger signal on the edge. However, since real
images may contain edges separated by only a few pixels,
too large values of ω may blur adjacent edges. In practice, ω
is typically set to be an integer between 3 and 7.

Candidate curves and their edge responses To locate low-
contrast edges in very noisy images, the individual pixel
responses (4) may not be very informative. Rather, as in
earlier works that handle high noise levels [11,22], we sum
several pixel responses to form an edge response. Specifi-
cally, the edge response of a candidate curve h : [x1, xL ] �→
[ω, n − ω] is defined as

R(h) = 1

σ
√
L

L∑

k=1

R(xk, �h(xk)�). (6)

Due to the normalizing factor 1
σ
√
L
, the randomvariable R(h)

has unit variance. Its expectation depends on the distance
between the candidate curve and the image edges. If h is at a
vertical distance larger than ω from any edge, then ER(h) =
0. In contrast, if it is uniformly close to an edge g, with
supx∈[x1,xL ] |g(x) − h(x)| ≤ γ , for some integer γ < ω,
then

|ER(h)| ≥ μΓ (g)

σ
·
√
L(ω − γ )√

2ω
. (7)

In particular, if h = g, then |ER(h)| = μΓ (g)
σ

√
Lω
2 .

Edge detection as hypothesis testing Similar in spirit to the
a-contrario principle [7], we formulate edge detection in a
strip as a multiple hypothesis testing problem. Given a finite
set S of candidate curves, the null hypothesis is that the strip
is edge-free and thus no candidate curve in S traces a real
edge. The alternative is that at least one, but possibly more
candidate curves h ∈ S trace actual edges. We compute the
edge responses of all h ∈ S and retain for further analysis
only those with a statistically significant response.

4 Edge Regularity and Search Spaces

To employ the above hypothesis testing approach we thus
need to construct a suitable finite set S of candidate curves,
referred to as a search space, devise a computationally effi-
cient method to compute all its edge responses, and a suitable
threshold to retain only the statistically significant ones. On
the one hand, the search space S needs to be sufficiently
large so that any image edge is well approximated by one
of its candidate curves. On the other hand, to comply with
the sublinear time constraint, its size must be significantly
smaller than n2. For these two conflicting requirements to
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hold, some regularity must be imposed on the edges. Similar
to [3], we consider the following class of smooth edges:

Definition 1 A function f : [0, 1] �→ (0, 1) is b-regular
with b = (b1, b2, . . . , br+1) ∈ R

r+1+ if it is at least (r + 1)-
times differentiable and satisfies

‖ f (k)‖∞
k! ≤ bk, k = 1, . . . , r + 1.

For future use, we denote the corresponding set of dilated
edges on the square [0, n]2 by

Rb,n = {g | f is b-regular and g : x ∈ [0, n] �→ n f
( x
n

)}.

With detailed proofs in Appendix 3, the main result of
this section (Theorem 1) is that for a sufficiently narrow
strip, given a-priori knowledge of the vector b, we can
construct a search space S of quantized polynomials, such
that: (1) the worst-case approximation error inside the strip,
supg∈Rb,n

minh∈S ‖g − h‖∞ is small; and (2) its size |S| �
n2. Properties (1) and (2) allow the detection of curved edges
in sublinear time.

Search space of quantized polynomials In our approach, we
approximate curves by low-degree polynomials. Indeed, for
any g ∈ Rb,n , |g(r+1)(x)| ≤ br+1(r+1)!/nr . If this quantity
is small, then by Taylor’s theorem, locally g is well approxi-
mated by a degree r polynomial. As there are infinitely many
polynomials of degree r , we quantize their coefficients to
make them searchable.

Let x0, . . . , x2L be 2L + 1 consecutive integers. For any
g ∈ Rb,n , define its symmetric approximator over the inter-
val I = [x0, x2L ] as

Ps
I,Mq

(g) =
r∑

k=0

ak
Mq

( · − xL
L

)k

, (8)

where

ak =
⌊
g(k)(xL )LkMq

k! + 1
2

⌋
, k = 0, . . . , r (9)

and Mq is a positive integer which controls the level of
quantization. The following lemma quantifies how well g
is approximated by Ps

I,Mq
(g) in the interval I .

Lemma 1 Let g ∈ Rb,n and pq = Ps
I,Mq

(g) be its symmet-
ric approximator. Their difference is bounded by

sup
x∈I

∣
∣pq(x) − g(x)

∣
∣ ≤ r + 1

2Mq
+ br+1

2(2n)r
λ(I )r+1. (10)

In the following,weconsider intervalswhose length increases
with image width n as λ(I ) = O(nκ) for some κ ∈ [0, 1).
The second term in the error bound (10) results from the poly-
nomial approximation of g. If the interval I is sufficiently
short, namely κ ∈ [0, r

r+1 ), this term tends to zero with n.
The first term, due to coefficient quantization (8), decreases
as Mq is increased.

For the image strip I with columns x0, . . . , x2L , we thus
define its ideal search space as

S∗
p(b, I, Mq , n) = {Ps

I,Mq
(g) | g ∈ Rb,n}. (11)

Analyzing the exact size of the set (11) and the precise vectors
(a0, . . . , ar ) that belong to it are difficult problems. Instead,
we bound the individual coefficients.

Lemma 2 Let (a0, . . . , ar ) be the coefficients of the sym-
metric approximator (8) of a function g ∈ Rb,n. Then,
a0 ∈ [0, nMq ] and the higher-order coefficients satisfy

|ak | ≤
⌊
bkλ(I )kMq

2(2n)k−1 + 1

2

⌋

, k = 1, . . . , r. (12)

We denote by Sp(b, I, Mq , n) the set of quantized poly-
nomials whose coefficients satisfy the conditions of Lemma
2 and name it the polynomial search space. By definition,
it contains the ideal search space (11). We first quantify its
size, as n → ∞, see also Fig. 3a.

Lemma 3 The size of the polynomial search space of a strip
I of width O(nκ) scales with n as follows:
Case (i): linear edges, b1 > 0, and bk = 0 for all k ≥ 2,

∣
∣Sp(b, I, Mq , n)

∣
∣ = O(n1+κ). (13)

Case (ii): general curved edges, bk > 0 for all k = 1, . . . , r ,

∣
∣Sp(b, I, Mq , n)

∣
∣ =

{
O(n1+κ) κ ∈ [

0, 1
2

]

O(n3κ) κ ∈ ( 1
2 ,

2
3

] (14)

Equations (14) and (13) show that up to κ ≤ 1/2, the search
spaces of straight or curved edges have comparable size. For
κ ∈ (1/2, 2/3], the curvature of edges is noticeable, leading
to a significantly larger search space. We stop κ at 2/3 since
the size of the search space is then O(n2), implying that
even with a single operation to process each candidate curve,
thiswould violate the sublinear constraint. Furthermore, with
κ < 2/3, Lemma 2 implies that for sufficiently large n, ak =
0, for all k > 2. In other words, the sublinear constraint
means that asymptotically in n, regardless of the smoothness
vector b, the search space contains quadratic polynomials.
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Fig. 3 Growth exponents of a
the size of the polynomial
search space. b The time
complexity to compute all the
edge responses associated to the
polynomial search space

Piecewise linear interpolation From a computational view-
point, a strip of width L = O(

√
n), namely κ = 1/2 is

already problematic: by Lemma 3, it contains O(n3/2) can-
didate curves, and by Eq. (6), each edge response, being a
scaled sum of L individual pixel responses, requires O(L)

operations to compute. Hence, computing all edge responses
yields O(n2) operations per strip, which contradicts the sub-
linear requirement.

To lower the computational cost, we further approximate
each polynomial curve by its piecewise linear interpolant.
This allows use of the line integral method [4], which cal-
culates the edge responses of all linear candidate curves in a
strip in an efficient recursive manner.

Specifically, consider an interval I of length λ(I ) = 2md,
for some integers m and d, divided into 2m segments each
of length d. We approximate each quantized polynomial pq
by its piecewise linear function 
(x) = Im(pq)(x), which
interpolates pq at the 2m+1 equispaced points in the interval
I . We denote the resulting set of piecewise linear functions
as the search space,

S(b, I, Mq ,m, n) = {Im(pq) | pq ∈ Sp(b, I, Mq , n)}.

To obtain the edge responses of all the candidate curves in
this search space, we proceed in two steps. First, we compute
all the linear edge responses in the 2m strips and store them
in the memory. Then, for each candidate curve, we retrieve
the responses of its 2m linear pieces and output their scaled
sum as its edge response.

Our main result, stated in the theorem below, is that: (i)
the error of this piecewise linear interpolation can be kept
small; and (ii) computing all the edge responses can be done
in sublinear time.

Theorem 1 Let S be the search space of linearly interpo-
lated symmetric approximators with spacing d, correspond-
ing to a strip I of width λ(I ) = 2md. Then, for any g ∈ Rb,n,
there is an 
 ∈ S such that inside I,

‖
 − g‖∞ ≤ E1(b, I, Mq , n) + E2(b, I, Mq , n,m) (15)

where the two error bounds E1 and E2 are given by

E1 = r+1
2Mq

+ br+1
nr

(
λ(I )
2

)r+1
(16)

E2 = 1
8Mqm2

r∑

k=2

k(k − 1)
⌊
bkλ(I )k Mq

2(2n)k−1 + 1
2

⌋
. (17)

For d = O(nκ∧1/2), the number of operations to compute
the edge responses of all candidate curves in S is

{
O(n1+κ log n), κ ∈ [

0, 1
2

]

O(n4κ−1/2), κ ∈
(
1
2 ,

5
8

)

For κ ∈ [0, 5/8) and d = O(nκ∧1/2), the two error terms
are bounded by a constant independent of n.

5 Sublinear Multiscale Curved Edge Detection

Wenowprovide amore detailed discussion of our strip-based
edge detection scheme. In Sect. 5.1, after a motivating exam-
ple, we construct a multiscale search space for a strip and
describe the accompanying detection algorithm, under the
assumption that the strip contains a single step edge. In The-
orem 2, we show that under certain conditions, with high
probability, this algorithm accurately estimates the unknown
edge.

Section 5.2 is devoted to the second step of the algorithm,
namely tracking. We describe an iterative procedure which
explores a small set of plausible extensions to the edges esti-
mated so far, and based on the resulting edge responses,
decides if andwhere to proceed. In Sect. 5.3, we show that the
time complexity of the tracking procedure is asymptotically
negligible compared to that of the detection step. Combin-
ing this with its minimal detectable edge saliency (Lemma
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Fig. 4 An strip of J = 6 scales with Jd = 4. The columns confined
by red, green and blue dashed lines correspond, respectively, to its sub-
strips at scale 1, 3, and 5. In each of these scales, a candidate curve

was drawn in the same color. A candidate curve at scale 6 has 4 linear
pieces. Candidate curves at scale s ≤ Jd + 1 have only 2 linear pieces
of length 2s−1 each (Color figure online)

5) yields the trade-off between computational cost and sta-
tistical accuracy of our algorithm. Finally, in Sect. 5.4, we
consider several practical issues and required modifications,
so that the resulting algorithm can successfully detect edges
in real images.

5.1 Multiscale Strip-Based Edge Detection

The approach outlined in Sect. 4 was based on two com-
ponents: (1) prior knowledge of edge smoothness; and (2)
computing edge responses in a wide strip, to facilitate detec-
tion at low SNR settings.

In general, however, someof the image edgesmay bemore
wiggly than expected and violate the assumed smoothness
condition. Then no curves in the search space can approxi-
mate these edges uniformly well across a wide strip. In this
case, a large strip width is in fact detrimental to their detec-
tion.

For example, consider an L column strip containing a sin-
gle wiggly edge g. With a mask width ω = 1, the expected
edge response of a candidate curve h is proportional to the
number of pixels at which �h� = �g�,

|ER(h)|= μΓ (g)√
2σ

· |{k ∈ {1, . . . , L}, �h(xk)�=�g(xk)�}|√
L

.

In contrast, the pixel responses in any column of the strip,
precisely on the edge, have expected value

|ER(xk, �g(xk)�)| = μΓ (g)√
2σ

, k = 1, . . . , L .

Thus, if for all h ∈ S, the overlap with the wiggly edge g
is smaller than

√
L pixels, then the pixel responses are more

discriminative than the longer edge responses.
Themoral of this example is significant: A short candidate

curve can be better suited for detecting a wiggly edge than a
long one which approximates it poorly. Indeed if the strip is

narrow, amisspecified b2 has no effect on the resulting search

space. Specifically, from Lemma 2 with λ(I ) <
√

2n
b2Mq

, it

only contains linear candidate curves because a2 = 0. Moti-
vated by this observation, we develop a multiscale scheme
to detect curved edges not only in the full strip, but also in
its sub-strips of various widths, while retaining the sublinear
computational efficiency.

Multiscale search space and detection procedure Consider a
strip with L = 1+2J columns.We denote its middle column
as the scale 0 sub-strip, while for s ≥ 1, the scale s sub-strip
is its 1 + 2s middle columns. The strip maximal scale is J .
Given a smoothness vector b, we associate a search space to
each of these J+1 nested sub-strips. The scale 0 search space
is composed of the pixels of the middle column. The other
search spaces are constructed as described in the previous
section. Specifically, let Jd < J be a positive integer. A
candidate curve in the search space at scale s ∈ {1, . . . , Jd}
has two linear pieces of length 2s−1 each,whereas for s > Jd ,
it has 2s−Jd linear pieces of individual length 2Jd . See Fig. 4
for an illustration. This design keeps the interpolation error
under control by limiting the length of each linear segment
to at most d = 2Jd . As discussed previously, we choose Jd
such that 2Jd = O(nκ∧1/2).

The union of the J + 1 search spaces is referred to
as the multiscale search space. It is given by TJ := ∪J

s=0
S(b, Is, Mq ,ms, n) where Is is the interval of scale s, ms is
1 for s ≤ Jd and 2s−Jd−1 for s > Jd .

For analysis purposes, assume that the strip contains a
single step edge. As outlined in Algorithm 2, the multiscale
detection scheme works as follows: We first compute all the
edge responses at scale 0. If a candidate curve fires, that is, the
absolute value of its edge response exceeds a preset detection
threshold,we stop the procedure andkeep the candidate curve
with the maximal absolute edge response as the estimated
edge. Otherwise, we proceed to the next scale. The first scale
at which some candidate curve fires is denoted s∗. If we reach
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Algorithm 2 Multiscale Edge Detection

1: Input: a (1 + 2J )-column strip with at most one edge.
2: Parameter: detection threshold τd .
3: for scale s = 0 to J do
4: Calculate edge responses R(
s) of all candidate curves 
s at scale

s.
5: if max
s |R(
s)| > τd then
6: Output 
̄s = argmax
s

|R(
s)| as the detected edge.
7: Set s∗ to s.
8: return
9: end if
10: end for
11: Set s∗ to +∞.

scale J and none of the scale J candidate curves fired, we
conclude that there is no edge in the strip, or it is too weak
to be detected, and set s∗ = +∞.

Detection threshold Since all the edge responses are
Gaussian distributed with unit variance, by a standard union
bound argument we have the following result.

Lemma 4 Let α ∈ (0, 1). For any collectionA of candidate
curves, we have

P

(

max
h∈A

|R(h) − ER(h)| ≤
√

2 ln |A|
α

)

≥ 1 − α. (18)

According to (18), in an edge-free strip, with probability at
least 1 − α, all the edge responses are uniformly bounded
in absolute value by

√
2 ln(α−1|TJ |). However, if an edge

is indeed present, we not only want to reliably decide that
it exists, but also to accurately estimate it. Hence we use a
slightly higher detection threshold

τd = Δ +
√

2 ln |TJ |
α

(19)

with say Δ = 1. By construction, |TJ | and the size of the
search space at scale J are of the same order, which implies
that τd grows at rate O(

√
ln n).

Minimal detectable edge SNR Given the threshold (19), the
following lemma characterizes the minimal edge SNR above
which any dilated b-regular edge can be detected with over-
whelming probability.

Lemma 5 In a strip of O(nκ) columns, with κ ∈ [0, 5/8),
the minimal detectable SNR of a dilated b-regular edge
decreases at rate O(n−κ/2

√
ln n).

Asymptotic performance guarantee The selected threshold
controls the number of false alarms in the background. But
we also need to guarantee the candidate curves that do fire are
well aligned with the true edge. We thus define the covering
ratio as the proportion of a candidate curve covered by the
signal tube of the edge.

Definition 2 Let {x1, x2, . . . , xL} be L consecutive integers.
Let h be a curve defined on the interval [x1, xL ]. Its covering
ratio with respect to a function g ∈ Rb,n is

ρ(g, h) = 1

L

L∑

k=1

1|h(xk)−g(xk )|≤ω−1.

To shorten the notation,wewrite the error terms (16) and (17)
in Theorem1 as E1(I ) and E2(I,m), where 2m is the number
of segments I is divided into. Clearly, max1≤s≤J E1(Is) +
E2(Is,ms) is small when n is large. Hence, we assume that
for some integer γ ∗ ≤ ω − 1

max
1≤s≤J

E1(Is) + E2(Is,ms) ≤ γ ∗ (20)

Under this assumption, we have the following result.

Theorem 2 Let (s∗, 
̄s∗) be the output of Algorithm 2 with
a fixed false alarm rate α, on a strip of width O(nκ) with
κ ∈ [0, 5/8), that contains a single edge g ∈ Rb,n. Then, for
any ε > 0, δ > α, and n sufficiently large, with probability
at least 1 − δ, either no candidate curve fired up to scale J
(s∗ = +∞) or the output curve 
̄s∗ has a covering ratio at
least ω−1(ω − γ ∗)(1− ε). Formally, the following event has
probability at least 1 − δ

{
s∗ = +∞} ∪

{

s∗ < +∞, ρ(g, 
̄s∗) >
ω − γ ∗

ω
(1 − ε)

}

.

5.2 Edge Tracking

After detecting parts of edges in a few strips using Algorithm
2, we apply an iterative tracking procedure that extends them
outside the strips. As detailed below, our tracking method
relies on the assumededge smoothness, to extend the detected
edge only in a small window adjacent to its current estimated
end location.

Tracking procedure For simplicity, we still assume that the
image contains a single edge. Let (s∗, 
̄s∗) be the output
of Algorithm 2 on an image strip. If s∗ = ∞, there is no
edge to track. Otherwise, with some abuse of notation, let
I0 denote the interval corresponding to the scale s∗. To its
right, define consecutive tracking intervals Ii = [x̄i , x̄i+1]
of length λ(Ii ) = L track, i ≥ 1.

As outlined in Algorithm 3, starting from I1, we itera-
tively extend the edge estimate to the right. Denote by p0
the polynomial curve on I0 whose linear interpolant is 
̄s∗ .
At the first iteration, given p0 and the vector b, we construct
a set of polynomial candidate curves on I1, referred to as
p0’s smooth extensions N1(p0). From this set we select the
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curve p1 with the largest edge response in absolute value. If
|R(p1)| exceeds a preset tracking threshold, p1 is accepted
as a valid extension and tracking continues onto I2 with p1
taking up the role of p0. Otherwise, we reject p1 and stop the
tracking.

The role of the tracking threshold is to avoid tracking
non-existent edges. Specifically, let Ig denote the domain of
definition of an edge g with I0 ⊂ Ig . Then ideally, tracking
should stop at i∗ = min{i ≥ 1, Ig ∩ Ii = ∅}.

Since the number of tracking intervals can potentially
be O(n), extreme noise variations of similar magnitude as
the detection threshold τd can occur. Unlike in detection, in
the tracking phase candidate curves are mostly concentrated
around the true edge. As a single poorly selected extension
could derail the whole tracking process, it is desirable to let
good candidate curves have larger expected edge responses.
By Eq. (7), we use longer intervals for tracking. Specifically,
we set

L track =
{
2t , s∗ = 0

2tλ(I0), s∗ > 0
(21)

for some constant integer t ≥ 0, called scale offset, In our
experiments we used t = 1.

Algorithm 3 Rightward Edge Tracking
1: Input: a polynomial curve p0 and m tracking intervals.
2: Parameter: tracking false alarm rate.
3: for i = 0 to m do
4: Determine pi ’s set of smooth extensions Ni+1(pi ).
5: Set the tracking threshold τi+1.
6: Calculate all the edge responses for Ni+1(pi ).
7: Find pi+1 = argmaxh∈Ni+1(pi ) |R(h)|.
8: if |R(pi+1)| ≤ τi+1 then
9: Reject pi+1.
10: Abort.
11: end if
12: end for

Edge responses and tracking threshold A good tracking
threshold stops tracking neither too early nor too late. To help
set such a threshold, in rightward tracking the edge response
of a candidate curve on [x̄i , x̄i+1] is based on its values at
{x̄i + 1, x̄i + 2, . . . , x̄i+1}, excluding the leftmost point. As
noise in different columns is independent, this way, the cal-
culated edge responses are independent of the previous ones
leading up to it. Lemma 4 then implies the following result:

Lemma 6 Let Ig denote the domain of an edge g and i∗ =
min{i ≥ 1, Ig ∩ Ii = ∅} the index of the first edge-free
tracking interval. For i ≥ 1, the tracking threshold

τi =
√

2 ln
|Ni (pi−1)|

α
(22)

ensures that the probability of the tracking procedure to con-
tinue beyond i∗ intervals is at most α.

Smooth extensions For all i ≥ 0, since we choose the exten-
sion pi+1 from the set Ni+1(pi ), ideally it should contain
at least one candidate curve uniformly close to the edge on
Ii+1 with high probability. To construct such a set, we ask
the following questions: (1) if pi is a quantized polynomial
approximator of the edge g on Ii , how can we use pi to track
g on Ii+1? (2) what if this assumption of pi does not hold?

For simplicity, consider the problem of constructing
N1(p0) when I0 is degenerate, namely x̄0 = x̄1. This sit-
uation arises when some pixel fires in the middle column
of the detection strip and p0 is reduced to a quantized con-
stant. To answer the first question, assume that we know the
quantized location of the edge at x̄1

a′
0

Mq
, a′

0 =
⌊

g(x̄1)Mq + 1

2

⌋

(23)

Our goal is to specify a set of quantized polynomials which
contains the following approximator of g on I1

r∑

k=0

ak
Mq

( · − x̄1
λ(I1)

)k

with ak =
⌊
g(k)(x̄1)λ(I1)k Mq

k! + 1
2

⌋
.

(24)

This is not the symmetric approximator defined in (8) because
the corresponding Taylor series of g is expanded about the
left end point of the interval I1. We call this the asymmetric
approximator of g on I1 and denote it by Pa

I1,Mq
(g). This

polynomial representation is more useful than its symmetric
counterpart because for it to pass through (x̄1, a′

0/Mq), we
only need to set a0 = a′

0. Furthermore, since g is b-regular,
by Lemma 2

|ak | ≤
⌊
bkλ(I1)kMq

nk−1 + 1

2

⌋

, k = 1, . . . r. (25)

Hence, Pa
I1,Mq

(g) belongs to the set of asymmetric polyno-

mials on I1 whose coefficients satisfy Eqs. (25) and a0 = a′
0,

which we call the oracle extensions of g on I1.
In practice, we do not know a′

0. However, Theorem 2
shows that the estimate p0 approximates the edge well over
its domain of definition. In particular, in the present degener-
ate case, with high probability the pixel (x̄1, �p0�) belongs to
the signal tube, and thus satisfies |�g(x̄1)� − �p0�| ≤ ω − 1.
Hence, with high probability,

a0 ∈
⋃

|c−�p0�|≤ω−1

[cMq , (c + 1)Mq ] (26)

since by Eq. (23), �g(x̄1)�Mq ≤ a′
0 ≤ �g(x̄1)�Mq + Mq .
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Hence, we chooseN1(p0) as the set of asymmetric poly-
nomials whose coefficients satisfy Eqs. (25) and (26). In
simple words, N1(p0) is the union of several vertically
shifted oracle extensions.

Next, consider the casewhere the detected candidate curve
p0 is non-degenerate, namely λ(I0) > 0. Our goal is still
to construct a set N1(p0) which contains Pa

I1,Mq
(g) with

high probability. First assume analogously that we know the
symmetric approximator

Ps
I0,Mq

(g) =
r∑

k=0

a′
k

Mq

(
· − x̄0+x̄1

2

λ(I0)/2

)k

with

a′
k =

⌊
g(k)(x̄1)λ(I0)kMq

2kk! + 1

2

⌋

, k = 0, . . . , r.

Since pq = Ps
I0,Mq

(g) does not uniquely characterize a
curved edge g in general, we define the polynomials

E1
(
pq
) =

{
Pa
I1,Mq

(g′), g′ ∈ Rb,n and Ps
I0,Mq

(g′) = pq
}

each of which may serve as a valid extension. To describe
them, we observe that Ps

I0,Mq
(g), when restricted to [ x̄0+x̄1

2 ,

x̄1], namely the right half of the interval I0, is the asym-
metric approximator of the edge g on that interval of
length λ(I0)/2. As a result, Ps

I0,Mq
(g) and Pa

I1,Mq
(g) can be

related in terms of their coefficients thanks to the following
lemma.

Lemma 7 Let p(0)
q and p(1)

q be the asymmetric approxi-
mators of a function g ∈ Rb,n on the adjacent intervals
I ′
0 = [x ′

0, x
′
1] and I ′

1 = [x ′
1, x

′
2]

p(i)
q (x) =

r∑

k=0

a(i)
k

Mq

(
x − x ′

i

λ(I ′
i )

)k

, i = 0, 1.

Then, the constant term of p(1)
q satisfies

∣
∣
∣
∣
∣

a(1)
0

Mq
− p(0)

q (x ′
1)

∣
∣
∣
∣
∣
≤ r + 2

2Mq
+ br+1

nr
λ(I ′

0)
r+1 (27)

and its higher-order coefficients satisfy for k = 1, . . . , r

∣
∣
∣
∣a

(1)
k − a(0)

k
λ(I ′

1)
k

λ(I ′
0)

k

∣
∣
∣
∣ ≤ 1

2

(

1 + λ(I ′
1)

k

λ(I ′
0)

k

)

+ Q (28)

where Q = Mqλ(I ′
1)

k

nk−1 min(2bk, (k + 1)bk+1
λ(I ′

0)

n ).

The scaling factor
λ(I ′

1)

λ(I ′
0)

relates the two adjacent asym-

metric approximators of different lengths. For illustrative
purposes, consider the implications of this lemma when the
edge g is assumed linear and the scaling factor is 1, namely
λ(I ′

0) = λ(I ′
1). Here, Eq. (28) simplifies to |a(1)

1 − a(0)
1 | ≤ 1

since b2 = 0. Hence, given a(0)
1 , the number of possible val-

ues for a(1)
1 is 3, a substantial reduction from 1+2b1Mqλ(I ′

1)

as an exhaustive approach would imply. Similar to the
degenerate case, additional computational saving is obtained
thanks to the reduced uncertainty on a(1)

0 as shown by Eq.
(27).

Given p(0)
q on I ′

0, the set of asymmetric polynomials p(1)
q

whose coefficients satisfy Eq. (27) and (28) are referred to as
its oracle extensions on I ′

1. By this lemma, we then construct
the oracle extensions of the symmetric approximator pq =
Ps
I0,Mq

(g) that contain E1(pq).
However, Ps

I0,Mq
(g) is not known in practice because the

detected edge p0 is only guaranteed to be high covering
asymptotically (Theorem 2). Assume ρ(g, p0) ≥ ρ for some
ρ > 0. Then Ps

I0,Mq
(g) must belong to

Bρ(p0) = {Ps
I0,Mq

(g′), g′ ∈ Rb,n with ρ(g′, p0) ≥ ρ}.

Its rationale echoes that of Eq. (26). Consequently, we obtain
the smooth extensions

N1(p0) =
⋃

pq∈Bρ(p0)

E1
(
pq
)
.

As it is difficult to derive a tight superset for Bρ(p0), we
heuristically replace it by a small set of vertically shifted p0,
for instance, {p0 − 1, p0, p0 + 1}.

5.3 Sublinear Complexity

Tracking has a lower complexity than detection. Specifically,
when bk > 0, k = 1, . . . , r , by definition (21), the length of a
tracking interval L track is at most O(nκ), and all the intervals
Ii have the same length except for i = 0. Then Lemma 7
implies

|Ni+1(pi )| ≤ C(b, Mq) · n(2κ−1)∨0, i ≥ 0.

With atmost n/λ(Ii ) = O(n1−κ) tracking intervals, the algo-
rithm goes over at most O(n(1−κ)∨κ) smooth extensions. As
it takes O(nκ) operations to calculate the edge response of
a smooth extension, tracking takes at most O(n1∨2κ) oper-
ations, which is asymptotically small compared to that of
detection (Theorem 1). In other words, the overall runtime
of the algorithm is determined by its detection step.

The same conclusion holds for straight edges, where
b1 > 0 and bk = 0 for k ≥ 2. Here, the time com-
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plexity for tracking is O(n), again smaller compared to
O(n1+κ log n), κ ∈ [0, 1) needed for detection.

5.4 Multiple Edges and Other Practical Issues

Several modifications are needed before our algorithm can
be applied to natural images.

Multiple edges and nonmaximal suppression. Real images
typically contain multiple edges of different contrasts. The
detection algorithm thus cannot stop at the first scale where a
candidate curve fired. Instead it should go over all the nested
sub-strips. Our analysis shows that if a dilated b-regular edge
is detected at scale s, it is likely to be detected at scale s + 1,
too. To minimize the number of times tracking is invoked,
we should keep only one candidate curve for each true edge
in the detection strip. To this end, we identify each detected
curve in the stripwith the pixel it passes through in themiddle
column and group the detected edges by their position and
the sign of their edge responses using the connected compo-
nent algorithm. For each resulting group, we then select the
shortest candidate curve with the strongest edge response as
its representative.

To detect edges that do not span the whole image width,
we extract from the image several equidistant vertical strips,
and then track the detected edges rightward till we reach an
adjacent strip or the image border. Leftward tracking is done
in a similar manner. To handle those nearly vertical edges,
we transpose the image and repeat the same procedure. This
amounts to extracting horizontal detection strips from the
original image and then tracking upward/downward.

Consistency test. Edge response, though informative, can-
not be used as the only criterion for judging the saliency of
a candidate curve. In particular, it cannot rule out broken
edges. As detailed in Appendix 1, we use a χ2 consistency
test to check if the pixel responses of a candidate curve are
sufficiently uniform. This test not only reduces the number
of spurious edges produced in the detection stage, but also
enhances the robustness of the tracking procedure by elim-
inating candidate curves that deviate significantly from the
true edge.

Post-processing. Ideally, tracking should stop at iteration
i∗ = min{i ≥ 1, Ig ∩ Ii �= ∅}. In practice, the last track-
ing interval may partially extend beyond the end of the edge,
Ii∗\Ig �= ∅. Consequently, the last extension needs to be
trimmed so the final output accurately reflects the true extent
of the edges. Appendix 2 describes an endpoint location pro-
cedure for this purpose.

The actual detection and tracking procedure are summa-
rized in Algorithms 4 and 5.

Algorithm 4 Multiscale Edge Detection

1: Input: a noisy (1 + 2J )-column strip.
2: Output: a list of detected polynomial edges in the strip.
3: Parameter: detection false positive rate αd .
4: Calculate the edge responses at all the scales s = 0, . . . , J .
5: Set the detection threshold τd according to Eq. (18).
6: Remove the candidate curves whose edge responses are smaller than

τd in absolute value.
7: Group the remaining candidates according to their position and the

sign of their edge responses.
8: For each group, pick the shortest candidate curve with the largest

response in absolute value.
9: Subject these candidate curves to the consistency test and output

those passing the test.

Algorithm 5 Rightward Edge Tracking
1: Input: a list of polynomial candidate curves andm tracking intervals.

2: Output: a list of smooth extension sequences.
3: Parameter: tracking false positive rate αt .
4: for each detected polynomial candidate curve p0 do
5: for i = 0 to m do
6: Determine pi ’s smooth extensions Ni+1(pi ).
7: Set the tracking threshold τi+1 by Eq. (22).
8: for each candidate curve in Ni+1(pi ) do
9: Subject it to the consistency test.
10: Calculate its edge response.
11: Remove it fromNi+1(pi ) if (1) it fails the test or (2) its edge

response has different sign from p0.
12: end for
13: Find pi+1 = argmaxh∈Ni+1(pi ) |R(h)|.
14: if |R(pi+1)| ≤ τi+1 then
15: Reject pi+1.
16: Abort.
17: else
18: Trim pi using the endpoint location procedure.
19: end if
20: end for
21: end for

6 Experiments

We demonstrate the performance of our algorithm on both
synthetic andnatural images. In all experiments, the detection
and tracking false alarm rates were set to 10−5 and 10−4,

respectively.Alsofixedwere the interpolation spacingd = 8,
the quantization parameter Mq = 1, the scale offset t = 1,
and the smoothness vector b = (3, 10, 10), whichmeans that
all candidate curves were quadratic polynomials.

First, we compared the runtime of the detection and track-
ing steps of our sublinear algorithm on two sequences of
synthetic square images of increasing sizes, corrupted by
additive Gaussian noise with σ = 100. The first sequence
of images contained only noise. Hence, with high probabil-
ity the detection algorithm found no edges and the tracking
stepwas not invoked. In the second sequence, the images con-
tained one step edge along their diagonal with edge contrast
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Fig. 5 Runtime comparison a on pure noise images (σ = 100); b on
noisy images containing a diagonal step edge (SNR = 2). In agree-
ment with our theoretical analysis that tracking is significantly faster

than detection, the empirical runtime of the sublinear algorithm is only
slightly higher on the images with an edge than on the noise-free images

200 and SNR = 2, separating two constant-valued triangles.
In these images, both detection and tracking would run.

Our algorithm examined a single strip of scale J = 5 from
the middle of each input image with mask width ω = 3 and
tracked detected edges to both the left and right sides of the
strip. For comparison we also ran the line segment detector
(LSD) [29,30] and the Canny edge detector. To make them
yield good results on noisy images, their default parameters
were modified to [low, high] = [0.32, 0.62] (Canny) and
[S,Σ] = [0.17, 0.8] (LSD). All algorithms ran on a single
CPU.

The runtime results in Fig. 5, averaged over 10 indepen-
dent runs, show that our algorithm is indeed sublinear in the
image size while both Canny and LSD are linear. We also
see that, consistent with our theoretical analysis, tracking is
faster than detection.

Next we tested our algorithm on two 1000 × 1000 syn-
thetic images with edge SNR equal to 1 and 2 (Fig. 6). One
horizontal and one vertical image strip were used for edge
detection. We estimated the noise level from these two strips
by the median absolute deviation estimator [25] and ran the
algorithmwithω = 7 and J = 6. The results show that under
a weak SNR, our sublinear algorithm, thanks to its ability to
account for curved edges, was less prone to false alarm than
Canny and more robust compared with LSD.

To apply our algorithm to natural images, we need to esti-
mate the noise level. However, when only contrasted edges
are of interest, we may simply provide the algorithm with a
high noise level without actually estimating it. This leads to
edge outputs with starker contrast. We used this method in
Figs. 7, 8 and 9. In these images, we extracted eight detec-
tion strips (four equidistant horizontal strips and four vertical
ones) with J = 5. Input noise level σ was selected by the

following rule of thumb: in smooth and poorly contrasted
images, such as Figs. 8a and 9a, we set σ = 3. Otherwise,
we set σ = 20 to focus on contrasted edges. The mask width
ω was adjusted in a small range, between 3 and 7.

7 Discussion and Future Work

We have shown how multiple smooth curved edges can be
tracked in noisy images in sublinear time, assuming the edges
intersect one of the detection strips. An initial multiscale
search in a detection strip triggers a detection. The search
involves tests on a finite family of polynomial curves of
increasing length, where the larger the length the lower the
contrast at which a test reliably fires. A detection initializes a
tracking step that extends the initial detection along the edge.
Due to prior assumptions on the smoothness of the edges,
tracking is very efficient since each edge segment can only
be extended in a limited number of ways. For strong edges, a
test fires early in the multiscale search and immediately trig-
gers the tracking algorithm. Fainter edges are detected later,
in wider sub-strips.

Local edge detection algorithms that do not make prior
assumptions on the edges necessarily require at least linear
complexity in the number of pixels. Depending on their para-
meter settings, they may either yield multiple false alarms or
miss many of the true edges. In contrast, our method makes
use of the assumption of smoothness to detect and track even
low SNR edges in sublinear time, with virtually no false
alarms.

We provided a theoretical analysis of the computational
load of the detection and tracking parts of the algorithm. For
the detection part we also carried out a statistical analysis
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Fig. 6 Curved edge detection on 1000×1000 synthetic noisy images.
Top and bottom row shows respectively detected edges by our sublinear
algorithm from two strips, LSD and Canny in a and f. a Observed (SNR

= 2). b Sublinear. c Sublinear sketch. d LSD sketch. e Canny sketch. f
Observed (SNR = 1). g sublinear. h Sublinear sketch. i LSD sketch. j
Canny sketch

Fig. 7 Curved edge detection
in a natural image
(ω = 3, σ = 20). a Original
image (1280 × 960). b Detected
edges in four equidistant strips
of equal width (J = 5).
Depending on their contrast, the
edges were detected at different
scales. c Edges tracked from the
detected segments in d and in
four equidistant horizontal
detection strips (not shown). e
final sketch

showing that with high probability the only curves that fire
have a significant overlap with the true edge. We also pro-
vided the minimal contrast at which an edge will be detected.

In terms of future research, we believe it is possible to
extend the probabilistic analysis to the tracking part of the

algorithm to control the probability of tracking the entire edge
reliably. Furthermore, with more refined analysis, we believe
it will be possible to provide analytic upper and lower bounds
on the coefficients of the smooth extensions that are guaran-
teed to contain highly covering curves in the next tracking
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Fig. 8 Curved edge detection
in a natural image
(ω = 3, σ = 3). a Original
image (1024 × 768). b Detected
edges in four equidistant strips
of equal width (J = 5). From
the detection of the lane
markings in different strips, we
see again that the more
contrasted an edge is, the easier
it is to be detected, that is, at a
lower scale. c Edges tracked
from the detected segments in d
and from four equidistant
horizontal strips (not shown). d
final sketch

Fig. 9 Edge detection in the
two images a with 4320 × 2000
pixels and c (2416 × 1836),
respectively. All the detection
strips had scale J = 5. For
image a, the mask width and the
noise level were set to
ω = 4, σ = 3 while for image c,
ω = 5, σ = 20. a Original. b
Processed. c Original. d
Processed

interval. Currently, we use a heuristic to define this set of
coefficients.

An additional aspect of our method is the organization
of the computation in an easy to hard manner. Easy high-
contrast edges are detected early and tracked immediately.
Weaker edges come later. The computational load of the easy
part is much smaller than the total. In the future, we want to

further extend this principle to organize the type of edges
that are tracked. In other words, the computation would be
organized so that in a natural manner high-contrast straight
or very slowly varying edges are detected first, then in some
order the more wiggly and low-contrast edges are brought
into the computation. The advantage of this easy to hard
organization of the computation is that if interrupted early, it
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may still providemuchvaluable information about the image.
Furthermore, it is also possible to stop it, once relevant infor-
mation, depending on the particular application, has already
been found.

The need to keep the computation sublinear using the
line integral algorithm led to the division of the interval
into 2m subintervals requiring O(n4κ−1/2) operations when
κ ∈ (1/2, 5/8) (see proof of Theorem 1). We believe there
may be a recursive computation of the sums over all curves
on the domain, using dyadic decompositions that could be
achieved in O(n3κ log n) operations—i.e., the number of
curves up to a log factor—at the cost of a larger approxima-
tion width. This would then allow sublinear edge detection
over the entire range κ ∈ [0, 2/3), instead of the current
upper bound of 5/8.

Finally, a study of fundamental lower bounds on the num-
ber of operations needed to detect curved edges of various
possible lengths, contrasts and smoothness parameters, and
minimax lower bounds on the detectable edge SNR under
computational constraints are challenging topics for further
research.

Acknowledgements Funding was provided by Division of Mathemat-
ical Sciences (Grant No. 0706816 ).

Appendix 1: Consistency Test

Let (yk)1≤k≤L be a Gaussian random vector

yk = μk + ξk, k = 1, . . . , L

where the noise terms (ξk)1≤k≤L are i.i.d. of zero mean and
known variance σ 2. Under the null hypothesis, its mean vec-
tor satisfies μ1 = μ2 = · · · = μL . Then the test statistic

T = 1

σ 2

L∑

k=1

(

yk − 1

L

L∑

i=1

yi

)2

follows the Chi-squared distribution with L − 1 degrees of
freedom. We reject the null hypothesis when

T ≥ L − 1 + 2 ln δ−1 + 2
√

(L − 1) ln δ−1.

The false positive rate of this test is at most δ by the tail bound
[18]

∀t > 0, P

(
T − (L − 1)

L − 1
≥ 2t + 2

√
t

)

≤ e−(L−1)t .

Appendix 2: Endpoint Location

The problem of locating the endpoint t of a candidate edge
given its values on an interval of length L can be formulated
as follows: let (yk)1≤k≤L be a Gaussian random vector

yk = μ · 1k≤t + ξk, k = 1, . . . , L

where the noise terms (ξk)1≤k≤L are i.i.d., with zero mean
and known variance σ 2, but the endpoint t and the contrast
μ �= 0 are unknown. Their maximum likelihood estimates
are

max
μ,t

log p(y1, . . . , yL) = min
μ,t

(
t∑

k=1

(yk − μ)2 +
L∑

k=t+1

y2k

)

= min
μ,t

(

μ2t − 2μ
t∑

k=1

yk

)

.

In particular, the estimated end point is

t∗ = argmax
1≤t≤L

(∑t
k=1 yk

)2

t
.

Appendix 3: Proofs

Proof of Lemma 1 Let p(x)be the degree r Taylor expansion
of g around the middle point xL of I = [x0, x2L ],

p(x) =
r∑

k=0

g(k)(xL)

k! (x − xL)k .

Since L = λ(I )/2, its approximation error satisfies

sup
x∈I

|p(x) − g(x)| ≤ br+1

nr
Lr+1.

It follows from the coefficient quantization formula (8)

∣
∣
∣
∣
∣

ak
Mq Lk

− g(k)(xL)

k!

∣
∣
∣
∣
∣
≤ 1

2MqLk
, k = 0, . . . , r.

Hence, writing pq = Ps
I,Mq

(g), we find

sup
x∈I

|p(x) − pq(x)| ≤ r + 1

2Mq
.

An application of the triangle inequality concludes the proof.
��
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Proof of Lemma 2 By definition, for each g ∈ Rb,n , there is
a b-regular function f such that g(x) = n f (x/n). According
to (8), the coefficients of its symmetric approximator are

ak =
⌊

f (k)(c/n)λ(I )kMq

k!2(2n)k−1 + 1

2

⌋

, k = 1, . . . , r.

Since |�z + 1
2�| ≤ |z| + 1

2 holds for all z ∈ R, we deduce

|ak | ≤
∣
∣
∣
∣
∣

f (k)(c/n)λ(I )kMq

k!2(2n)k−1

∣
∣
∣
∣
∣
+ 1

2
, k = 1, . . . , r.

Now, since f is b-regular,

|ak | ≤ bkλ(I )kMq

2(2n)k−1 + 1

2
k = 1, . . . , r.

As the coefficients ak are all integer valued, Eq. (12) follows.
��

Proof of Lemma 3 First consider the case b1 > 0 and bk = 0
for k ≥ 2. This corresponds to the assumption that image
edges can be well approximated by straight segments. In
this case, a0 can have nMq different values, whereas by Eq.
(12), the coefficient a1 can have approximately b1Mqnκ/2
different values, and ak = 0 for k ≥ 2. Hence, in this case,
the polynomial search space has O(n1+κ) candidate curves
which are all linear.

Next, consider the general case of curved smooth edges
with bk > 0, k = 1, . . . , r . Here, as above the coefficients
a0 and a1 still have O(n) and O(nκ) possible values. By
Eq. (12), the higher-order coefficients have O(nkκ/nk−1)

possibilities, of course provided that 1 + k(κ − 1) ≥ 0,
otherwise they have a constant number of possible val-
ues, independent of n. Hence in the general case its size is

O
(
nκ+1+∑r

k=2(1+k(κ−1))+
)

.

Let us analyze the behavior of this expression. For κ ∈
[0, 1/2], for all k ≥ 2, 1 + k(κ − 1) ≤ 0 and we obtain
O(n1+κ). For κ ∈ [1/2, 2/3] the term with k = 2 also con-
tributes and yields an overall sizeO(n3κ ). A value of κ > 2/3
yields a search space of size larger than O(n2) and thus not
relevant for sublinear edge detection. Thus, Eq. (14) follows.

��
Next, to prove Theorem 1 we shall make use of the fol-

lowing two auxiliary results:

Lemma 8 Let h(z) be a twice differentiable function defined
on a closed interval [z1, z2]. Let l(z) be its linear interpolant
such that l(zi ) = h(zi ), i = 1, 2. Then

sup
z∈[z1,z2]

|h(z) − l(z)| ≤ (z2 − z1)2

8
sup

z∈[z1,z2]
|h(2)(z)|.

Proof Define for any t ∈ (z1, z2)

At (z) = h(z) − l(z) − h(t) − l(t)

(t − z1)(t − z2)
(z − z1)(z − z2).

By construction, At (z) is twice differentiable and has at least
three roots {z1, t, z2}. Applying Rolle’s theorem twice, there
exists θt ∈ (z1, z2) such that A′′

t (θt ) = 0 or equivalently

h′′(θt ) − 2
h(t) − l(t)

(t − z1)(t − z2)
= 0.

It follows that

|h(t) − l(t)| ≤ (z2 − z1)2

8
sup

z∈[z1,z2]
|h′′(z)|.

��
Lemma 9 Assume λ(I ) = 2md for some integers d and m.
Let (x ′

k)0≤k≤2m be the 2m+1 equally spaced integers with a
spacing of d in the interval I = [x ′

0, x
′
2m]. For any function

g ∈ Rb,n, let pq be its symmetric approximator of degree
r on the same interval. Then the piecewise linear function 


that interpolates pq at the grid points {x ′
0, . . . , x

′
2m} satisfies

sup
x∈I

|
(x) − pq(x)|≤ 1
8Mqm2

r∑

k=2

k(k − 1)
⌊
bkλ(I )k Mq

2(2n)k−1 + 1
2

⌋
.

Proof of Lemma 9 Since the piecewise linear approximation

(x) interpolates the polynomial pq at 2m + 1 equidistant
points of the interval I , it follows from Lemma 8 that

sup
x∈I

|pq(x) − 
(x)| ≤ d2

8
sup
x∈I

|p(2)
q (x)| (29)

Combining this with the definition of pq(x), Eq. (8) and the
fact that L = md gives that

sup
x∈I

|pq(x) − 
(x)| ≤ 1

8Mqm2

r∑

k=2

|ak |k(k − 1).

The bound (12) on the coefficients ak yields the lemma. ��
Proof of Theorem 1 Let g ∈ Rb,n , let pq be its symmetric
approximator and let 
(x) be its piecewise linear interpolant.
By the triangle inequality in the interval I ,

‖g − 
‖∞ ≤ ‖g − pq‖∞ + ‖pq − 
‖∞

By Lemma 1, the first term on the right-hand side is bounded
by (16), whereas by Lemma 9 the second term is bounded by
(17). Hence, Eq. (15) of the theorem readily follows.
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Next, let us consider how large can the spacing d be. On
the one hand we would like d to be as large as possible, as
this leads to significant gains in the runtime of the line inte-
gral algorithm [4]. In details, this method calculates the edge
responses of all the linear candidate curves in a d × n strip,
in O(nd log d) operations instead of O(nd2) by the naive
method. While this recursion may induce an approximation
error [4], at high noise levels its effect is negligible.

Now on the other hand, a larger spacing d yields a larger
approximation error of the piecewise linear interpolation. For
large values of n, the asymptotically dominant error term in
(17) is the first summand with k = 2. This error term is
approximately equal to b2d2/(4n). More precisely,

∣
∣
∣
∣

1

4Mqm2

⌊
b2λ(I )2Mq

4n
+ 1

2

⌋

− b2d2

4n

∣
∣
∣
∣ ≤ 1

8Mqm2 .

For this term to be small, the spacing d should thus grow no
faster than O(

√
n).

Armed with these results, we now consider the number
of operations to calculate all the edge responses of linearly
interpolated candidate curves in the polynomial search space.
Wefirst calculate all the linear responses in the 2m contiguous
sub-strips of width d. Then, for each candidate curve we sum
the corresponding responses to form the final output.

The first step costs O(mnd log d) operations. For the sec-
ond step, consider first the case κ ∈ (1/2, 2/3). According to
(14), the number of polynomial candidate curves is O(n3κ).
Hence computing their edge responses requires O(mn3κ)

additional operations. Since λ(I ) = 2md, the overall com-
plexity is O(mnd log d +mn3κ) = O(n1+κ log d + n4κ/d).
Tominimize the complexity without sacrificing accuracy, we
thus choose d = O(

√
n). At this value of d the first term is

negligible, and the overall complexity is O(n4κ−1/2). For
κ ∈ [0, 1/2], a similar analysis shows that with d = O(nκ),
the complexity is O(n1+κ log n). As a result, the sublin-
ear constraint implies an upper bound on the strip width
κ ∈ [0, 5/8). ��

Proof of Lemma 5 As soon as the reference curve 
∗
J defined

in Eq. (32) satisfies

|ER(
∗
J )| ≥ τd + cβ (30)

where cβ is the standard normal distribution’s β-quantile, the
probability of the event {s∗ = +∞} of all candidate curves
not firing is less than β. A sufficient condition for Eq. (30)
to hold can be obtained using Eq. (7)

|ER(
∗
J )| ≥ μΓ (g)(ω − γ ∗)

√
L

σ
√
2ω

≥ τd + cβ

with L = 2J + 1 the number of columns of the full strip.
Rearranging this inequality, we find

μΓ (g)

σ
≥

√
2ω(τd + cβ)

(ω − γ ∗)
√
L

.

The strip width L = O(nκ) and the detection threshold τd =
O(

√
ln n) thus imply the asymptoticminimal detectable edge

SNR = O(n−κ/2
√
ln n). ��

Proof of Theorem 2 If a pixel in the middle column fires, its
signal must be nonzero on the high probability event

{

∀h ∈ TJ , |R(h) − ER(h)| ≤
√

2 ln |TJ |
α

}

. (31)

Consequently, its covering ratio is 1 with high probability.
Next, consider the case where 1 ≤ s∗ < ∞. The goal

is to show that, asymptotically, the curve 
̄s∗ enjoys a cov-
ering ratio close to 1 − γ ∗/ω with high probability. To this
end, we first lower bound the covering ratio in terms of edge
responses and then prove that when n is large, this lower
bound approaches 1 − γ ∗/ω with high probability.

First, we define the following J + 1 reference curves


∗
s = argmax

ρ(g,
s )=1
|ER(
s)|, s = 0, 1, . . . , J. (32)

Their existence is guaranteed by Assumption (20). Let Ls

be the number of columns in the scale s sub-strip. Eq. (7)
implies

|ER(
∗
s )|σ

√
2ωLs ≥ (ω − γ ∗)μΓ (g)Ls . (33)

By definition, any scale s candidate curve 
s also satisfies

|ER(
s)|σ
√
2ωLs ≤ ωμΓ (g)ρ(g, 
s)Ls (34)

Combining (33) and (34) gives the following deterministic
lower bound on the covering ratio

ρ(g, 
s) ≥ ω − γ ∗

ω

∣
∣
∣
∣
ER(
s)

ER(
∗
s )

∣
∣
∣
∣ , s = 0, . . . , J. (35)

Two straightforward triangle inequalities then lead to

ρ(g, 
s) ≥ ω − γ ∗

ω

|R(
s)| − |R(
s) − ER(
s)|
|R(
∗

s )| + |R(
∗
s ) − ER(
∗

s )|

As the relation |R(
̄s)| ≥ |R(
∗
s )| always holds, we obtain

ρ(g, 
̄s) ≥ ω − γ ∗

ω

|R(
̄s)| − |R(
̄s) − ER(
̄s)|
|R(
̄s)| + |R(
∗

s ) − ER(
∗
s )|
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which then implies

ρ(g, 
̄s) ≥ ω − γ ∗

ω

(

1 − v∗
s + v̄s

|R(
̄s)|
)

,

where v∗
s := |R(
∗

s ) − ER(
∗
s )| and v̄s := |R(
̄s) − ER(
̄s)|.

To get the desired result, it suffices to show that when n is
large, on a high probability event restricted to {s∗ < +∞},
both v∗

s∗ and v̄s∗ are small compared to |R(
̄s∗)|.
Though unknown, the reference curves 
∗

s are determin-
istic. Hence, it follows from Lemma 4 that max0≤s≤J v∗

s is
OP (

√
ln J ) = OP (

√
ln ln n). Since v∗

s∗ ≤ max0≤s≤J v∗
s ,

v∗
s∗ , it is asymptotically negligible compared to the detection
threshold τd = O(

√
ln n) with high probability. So is it to

|R(
̄s∗)| which by definition is larger than τd .
In contrast, at each scale, the candidate curve with the

maximal absolute edge response is random. To control v̄s∗ ,
we show such candidate curves can only belong to a cer-
tain set whose size we upper bound. Then Lemma 4 can be
used. To this end, we prove that thanks to the offset Δ in the
detection threshold, it is with high probability that a firing
candidate curve enjoys a minimal covering with the edge g
(Lemma 10) and there are at most O((ln n)3) such candi-
date curves at any fixed scale (Theorem 3). Theorem 2 now
follows. ��

Lemma 10 Onahighprobability event, any candidate curve

 firing at scale s∗ ∈ {1, . . . , J }, namely |R(
)| > τd , satis-
fies

ρ(g, 
) ≥ (ω − γ ∗)2Δ
2
√
3ω2τd

. (36)

Theorem 3 Let g ∈ Rb,n. For any κ ∈ [0, 5/8), in a strip of
O(nκ) columns, there is a constant C independent of n and
κ such that

|{
 ∈ S(b, I, Mq ,m, n) | ρ(g, 
) > ρ}| ≤ C

ρ6 .

Proof of Lemma 10 Equations (33) and (34) not only yield a
lower bound on the covering ratio (35), they also bound the
maximal expected edge responses of two successive scales

|ER(
∗
s )| ≤

√
3ω|ER(
∗

s−1)|
(ω − γ ∗)

, s = 1, . . . , J (37)

This holds, because by definition, Ls ≤ 3Ls−1, for all s ≥ 1,
with equality at s = 1. Combining Eqs. (37) and (35) gives

ρ(g, 
s) ≥ ω − γ ∗

ω

∣
∣
∣
∣
ER(
s)

ER(
∗
s )

∣
∣
∣
∣ ≥ (ω − γ ∗)2√

3ω2

∣
∣
∣
∣
∣

ER(
s)

ER(
∗
s−1)

∣
∣
∣
∣
∣
.

Next, applying the triangle inequality gives, ∀s ∈ {1, . . . , J }

ρ(g, 
s)≥ (ω−γ ∗)2(|R(
s)|−max
′∈TJ |R(
′)−ER(
′)|)√
3ω2(|R(
̄s−1)|+max0≤s≤J |R(
∗

s )−ER(
∗
s )|)

,

Let 
 be any candidate curve firing at scale s∗ ∈ {1, . . . , J }.
Then |R(
)| > τd , and all candidate curves up to scale s∗ −1
failed to fire. Hence, maxs<s∗ |R(
̄s)| ≤ τd , and

ρ(g, 
) ≥ (ω − γ ∗)2(τd − max
′∈TJ |R(
′) − ER(
′)|)√
3ω2(τd + max0≤s≤J |R(
∗

s ) − ER(
∗
s )|)

.

On the event (31) which according to Lemma 4 has proba-
bility at least 1 − α, we thus have

ρ(g, 
) ≥ (ω − γ ∗)2Δ
2
√
3ω2τd

.

��
Proof of Theorem 3 Theproof ofLemma3effectively shows
that the sublinear runtime requires ak = 0 for k > 2 when
n → ∞. We thus assume r = 2 in the following. Let
pq ∈ Sp(b, I, Mq , n) be such that 
 = Im(pq) intersects
the signal tube of an edge g ∈ Rb,n at point x ∈ I , that
is |
(x) − g(x)| ≤ ω − 1. By Theorem 1, and the triangle
inequality

|pq(x) − Ps
I,Mq

(g)(x)| ≤ |pq(x) − 
(x)| + |
(x) − g(x)|
+ |g(x) − Ps

I,Mq
(g)(x)| ≤ W

where W := ω − 1 + E1(I ) + E2(I,m). Let

A(pq) =
L∑

k=1

1|Ps
I,Mq

(g)(xk )−pq (xk)|≤W

where L is the number of strip columns. Hence, we find

A(pq) ≥
L∑

k=1

1|g(xk )−
(xk)|≤ω−1 = ρ(g, 
)L .

To prove the theorem, it suffices to show that there is some
constant C independent of n and κ such that for any ρ > 0,

∣
∣
{
pq ∈ Sp(b, I, Mq , n), A(pq) > ρL

}∣
∣ ≤ C

ρ6 .

To this end,we study two separate casesρL ≥ 6 andρL < 6.
First assume ρL ≥ 6. Since dq :=Ps

I,Mq
(g) − pq is a

quantized polynomial of degree at most 2, the set of integers
{xk ∈ I, |dq(xk)| ≤ W } can be divided into at most 2 groups
of contiguous integers on which dq is monotone. The largest
groupmust therefore have at least �ρL/2	 elements. Let I ′ ⊂
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I denote the smallest interval containing these integers. Its
length satisfies

λ(I ′) ≥ (ρL/2 − 1)+
(i)≥ ρL/3 > ρλ(I )/3 (38)

where inequality (i) holds thanks to the assumption ρL ≥ 6.
The polynomial dq is uniformly bounded by W over I ′,

which implies a bound on its coefficients. It can be proved,
for instance, by Markov’s theorem (see, e.g., [1]). ��
Theorem 4 (Markov) Consider the universal constants

Cr,k =
{∏k−1

j=0
r2− j2

2 j+1 , k > 0

1, k = 0

Then for any polynomial p(x) of degree r and any k ≤ r

sup
x∈[−1,1]

|p(k)(x)| ≤ Cr,k sup
x∈[−1,1]

|p(x)|.

The idea is thus to turn the bounds on the coefficients into a
bound on the number of such polynomials. Specifically, let
I ′ = [y0, y1] and apply Markov’s theorem to the polynomial

d̄q(x) = dq

(
y1 − y0

2
x + y1 + y0

2

)

which is uniformly bounded on the interval [−1, 1] by W .
We obtain for k = 1, 2

sup
x∈I ′

|d(k)
q (x)| ≤ C2,k

2kW

λ(I ′)k
< C2,k

6kW

ρkλ(I )k
, (39)

where the last inequality follows from Eq. (38). Let c denote
the interval I ’s midpoint and y∗ = argminy∈I ′ |y − c|. It is
clear |y∗ − c| < λ(I )/2. Hence for all k = 0, 1, 2

|d(k)
q (c)| ≤ |d(k)

q (c) − d(k)
q (y∗)| + |d(k)

q (y∗)|

≤ 2k

λ(I )k

2∑

i=k

|d(i)
q (y∗)|λ(I )i

(i − k)!2i . (40)

Substituting the estimates of Eq. (39) into (40), we obtain

|d(k)
q (c)| ≤ 2k

λ(I )k

2∑

i=k

|d(i)
q (y∗)|λ(I )i

(i − k)!2i

<
2kW

λ(I )k

2∑

i=k

C2,i3i

(i − k)!ρi
.

Hence if we write dq as

dq(x) =
2∑

k=0

āk
Mq

(
x − c

λ(I )/2

)k

,

its quantized coefficients (āk)0≤k≤2 can be bounded

|āk | = Mqλ(I )k

k!2k |d(k)
q (c)| ≤ MqW

ρ2k!
2∑

i=k

C2,i3i

(i − k)! .

Hence when ρL ≥ 6, the number of polynomials can be

upper bounded by C (MqW )3

ρ6 for a universal constant C .
Turn to the case ρL < 6. If a candidate curve 
 satisfies

|
(x) − g(x)| ≤ ω − 1 at some x ∈ I , we deduce

|
(x) − g(c)| ≤ ω − 1 + b1λ(I )

2
.

As a result, we are interested in bounding the size of

B =
{

pq
∣
∣
∣ min

x∈I |Im(pq)(x) − g(c)| ≤ ω − 1 + b1λ(I )
2

}

.

To this end, writing a generic element in the set B as

pq(x) =
2∑

k=0

ak
Mq

(
x − c

λ(I )/2

)k

,

we aim to bound a0. Applying the triangle inequality gives

|pq(c) − g(c)|
≤ min

x∈I

(
|pq(c)− pq(x)|+|pq(x)− 
(x)|+|
(x)−g(c)|

)

≤ 1

Mq

2∑

k=1

|ak | + E2(I,m) + ω − 1 + b1λ(I )

2

≤ b1λ(I )(1 + O(1))

thanks to Eq. (12). Multiplying both sides by Mq , we find
that |a0 − g(c)Mq | ≤ Mqb1λ(I )(1 + O(1)), and

|B| ≤ Mqb1λ(I ) (1 + O(1))
2∏

k=1

(
bkλ(I )kMq

(2n)k−1 + 2

)

.

As the condition ρL < 6 implies λ(I ) < 6
ρ
, we conclude

|B| ≤ C ′
ρ3 for some constant C ′ independent of n and κ .

Proof of Lemma 7 From Eq. (24), for all k = 1, . . . , r

∣
∣
∣
∣
∣

a(i)
k k!

Mqλ(I ′
i )
k

− g(k) (x ′
i

)
∣
∣
∣
∣
∣
≤ k!

2Mqλ(I ′
i )
k
, i = 0, 1.

An application of the triangle inequality leads to

∣
∣
∣
∣

a(0)
k k!

Mqλ(I ′
0)

k − a(1)
k k!

Mqλ(I ′
1)

k

∣
∣
∣
∣ ≤ k!

2Mqλ(I ′
0)

k + k!
2Mqλ(I ′

1)
k

+
∣
∣
∣g(k) (x ′

1

) − g(k) (x ′
0

)∣∣
∣ .
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Since
∣
∣g(k)

(
x ′
1

) − g(k)
(
x ′
0

)∣
∣ ≤ min

(
2‖g(k)‖∞, λ(I ′

0)

‖g(k+1)‖∞
)
, Eq.(28) of the lemma readily follows.

Regarding the constant term a(1)
0 , thanks to the uniform

approximation error bound (16), it satisfies

∣
∣
∣
∣
a(1)
0
Mq

− p(0)
q (x ′

1)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
a(1)
0
Mq

− g(x ′
1)

∣
∣
∣
∣ +

∣
∣
∣g(x ′

1) − p(0)
q (x ′

1)

∣
∣
∣

≤ r+2
2Mq

+ br+1
nr λ(I ′

0)
r+1.

��

Proof of Eq. (7) We start by showing that the condition
supx∈[x1,xL ] |h(x) − g(x)| ≤ γ implies that

max
1≤k≤L

|�h(xk)� − �g(xk)�| ≤ γ. (41)

To this end, note that the following holds for all (z1, z2) ∈ R
2

|�z1� − �z2�|
(i)≤ |z1 − z2| + |(z2 − �z2�) − (z1 − �z1�)|
(i i)
< |z1 − z2| + 1.

(i) follows from the triangle inequality. As z2−�z2� and z1−
�z1� take values in [0, 1), their difference is strictly smaller
than 1 in absolute value, hence inequality (i i). Consequently,

max
1≤k≤L

|�h(xk)� − �g(xk)�| < 1 + max
1≤k≤L

|h(xk) − g(xk)|
≤ 1 + sup

x∈[x1,xL ]
|h(x) − g(x)|

≤ 1 + γ.

Since max1≤k≤L |�h(xk)� − �g(xk)�| is an integer, its being
strictly smaller than γ + 1 can only imply Eq. (41).

To prove Eq. (7), we use Eq. (6) which gives

ER(h) = 1

σ
√
L

L∑

k=1

E [R(xk, �h(xk)�)] . (42)

If there is only one edge, all the summands in (42) have the
same sign. Hence, we deduce from Eqs. (5) and (41) that

|ER(h)| = 1

σ
√
L

L∑

k=1

|E [R(xk, �h(xk)�)] |

≥ μΓ (g)
√
L(ω − γ )+

σ
√
2ω

.

��
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