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Abstract Detecting edges in noisy images is a funda-
mental task in image processing. Motivated, in part,

by various real-time applications that involve large and
noisy images, in this paper we consider the problem of
detecting long curved edges under extreme computa-

tional constraints, that allow processing of only a frac-

tion of all image pixels. We present a sublinear algo-

rithm for this task, which runs in two stages: (i) a mul-

tiscale scheme to detect curved edges inside a few im-

age strips; and (ii) a tracking procedure to estimate
their extent beyond these strips. We theoretically ana-
lyze the runtime and detection performance of our algo-

rithm and empirically illustrate its competitive results

on both simulated and real images.

Keywords curved edge detection · sublinear algorithm

1 Introduction

Edge detection is a fundamental task in image analysis.

Since the seminal works of Marr and Hildreth [22] and
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Canny [5], numerous edge detection algorithms have

been proposed. Traditional methods mainly focused on

step edges and relied on discretized differentiation oper-

ators for their detection [6,10,13]. In contrast, to trace

semantically meaningful edges in natural images with

significant texture content, several learning based algo-

rithms were developed over the past years [17,2,8].

In various applications, thousands of large and noisy
images are acquired per hour and need to be quickly

analyzed. Examples include high-throughput industrial
imaging inspection systems, and cameras mounted in
either cars or autonomous drones, whose purpose is to
detect lanes, power lines etc., and avoid crashes. The

requirement to analyze many images in real time may

limit either the transfer from memory to CPU, or the

analysis in the CPU, to only a small fraction of all image

pixels. This raises an interesting statistical and compu-
tational question at the focus of our work: How well
can edge detection be performed under such restrictive
sublinear runtime constraints?

Even though the field of sublinear time algorithms

is quite developed, see for example the review [27], rel-
atively few sublinear methods have been proposed for
image processing tasks. Notable exceptions include the

early works on randomized and probabilistic Hough trans-
forms [32,14,15]. More recent ones include [25,16,29]
which applied sublinear property testing methods to bi-

nary images, and [18] which developed a sublinear time

algorithm for approximate template matching in natu-

ral images. In a more general context of sparse signal

recovery, in particular from large sensor networks, [11]

and [31] developed adaptive sequential sampling strate-

gies, where an initial portion of the sampling budget is

used to crudely measure the signal, and only its statis-

tically significant parts are kept for more refined mea-

surements and analysis. These schemes are able to re-
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cover signals with significantly reduced communication

and energy consumption. Closely related to our work

is the recent paper by Horev et al. [12], who focused

on detection of long straight edges in sublinear time.

They proved that under a certain worst-case setting,

sampling whole image columns is an optimal scheme.

They developed a strip-based edge detection algorithm,

that consists of two main steps: (1) detection of straight
edges inside few strips of the input image; (2) matching
detections in adjacent strips and validating them.

In this work, we extend the approach of Horev et al.

[12] to detect long curved edges in sublinear time. Our

main contributions are the development of a fast multi-

scale algorithm to detect curved edges in image strips,

a tracking algorithm to trace edges between strips and

a theoretical analysis of the complexity and statistical

accuracy of our method. A key insight of our work is
that if the input image contains few long edges, there
is no need to process all of its pixels, hence potentially

leading to significant savings.

Following a precise formulation of our problem setup

in Section 2, we first give a high level description of our

approach in Section 3. Motivated by [12], we also adopt

their strip-based approach for the initial detection step.

Their method, however, is not directly applicable to de-

tecting curved edges and there are two significant ob-
stacles that need to be addressed. First, as our goal is
to detect faint edges in possibly very noisy images, the

strips considered need to be wide. In such wide strips,

the curved edges cannot be well approximated by lin-

ear functions as done in [12]. Secondly, since edges are

curved they cannot be easily matched in adjacent strips.

To handle the first problem, we approximate curved
edges by higher degree polynomials. Since this signifi-

cantly increases the set of candidate curves, a funda-
mental question is whether processing this larger set
is still compatible with the sublinear complexity con-

straint. We study this question in Section 4, under the

assumption that image edges are smooth. We construct

a finite set of polynomials so that any curved but suffi-

ciently smooth edge can be accurately approximated in-

side the strip by one of these polynomials. We show that
when the strip is not too wide, this set is sufficiently
small in size to allow a sublinear runtime. Specifically,

in a strip of n rows and O(nκ) columns in an n × n

image, the number of polynomials in this set is

{

O(n1+κ) κ ∈ [0, 1
2 ]

O(n3κ) κ ∈ ( 12 ,
5
8 ).

(1)

Furthermore, thanks to the efficient line integral algo-

rithm [4], when these polynomials are substituted by

their continuous piecewise linear interpolants (see Fig.

1), detecting curved edges in a strip of width O(nκ)

columns can be carried out with time complexity

{

O(n1+κ log n) κ ∈ [0, 1
2 ]

O(n4κ−1/2) κ ∈ ( 12 ,
5
8 ).

(2)

Hence, as long as the extracted image strip has width
O(nκ) with κ < 5/8, asymptotically in n, curved edge

detection is possible in time sublinear in the image size

n2. It is interesting to compare this result to [12]. There,

detecting straight edges in a strip of width O(nκ) was

possible in sublinear time for any κ ∈ (0, 1), requiring

O(n1+κ log n) operations. For curved edges, in contrast,

not only is there an upper bound on the strip width,
but also for κ > 1/2 processing it takes significantly
more operations, compared to straight edge detection.

The strip-based detection approach described above

relies heavily on an a-priori assumption of the edge

smoothness. In particular, it may miss strong but wig-
gly edges. To make our algorithm robust against such

smoothness mis-specifications, in Section 5.1 we develop

a scheme to detect curved edges in several sub-strips

of different scales. Furthermore, we prove that under

suitable conditions this scheme produces well estimated

edges with high probability.

Next, we consider the problem of tracing the edges

outside of the narrow strips in which they were de-

tected. Horev et al. [12] assumed straight edges, which

enabled them to easily match detections across adja-

cent strips, and estimate the end location of detected
edges. Their approach are not applicable to our setting
of curved edges. In Section 5.2, we present an iterative

tracking procedure which extends the edges detected in

the strips to the rest of the image by sequentially ex-

ploring an adaptively determined sequence of small win-

dows. In Section 5.3, we show that with a window width

O(nκ), our tracking procedure costs at most O(n2κ∨1)
operations for κ ∈ [0, 5

8 ). Hence, tracking has negligi-

ble computation cost compared to the detection step.

Combining our analysis of the detection and tracking

procedures allows us to describe the trade-off between

the overall computational complexity of our algorithm

and its minimal detectable edge saliency (Lemma 5).

Finally, as discussed in Section 5.4, to successfully

apply our algorithm to real images, practical issues such
as edge localization and nonmaximal suppression need
to be addressed. We present in Section 6 several illus-

trative examples of our algorithm and runtime compar-

ison with the Canny edge detector [5] and the line seg-

ment detector (LSD) [30,9], which are both fast meth-

ods but with linear time complexity. We conclude the

paper with a discussion and future work in Section 7.
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(a) (b)

Fig. 1 (a) a piecewise constant image with two curved step
edges and three equidistant strips. (b) a zoom-in of the left-
most strip. The upper edge is well approximated by both a
quadratic polynomial (not shown) and its piecewise linear in-
terpolant, composed of four equal-length segments (in green).

2 Problem Setup

In this work we develop an algorithm and accompany-

ing theory for detecting curved edges in noisy images, in
sublinear time. While our algorithm can be applied to
arbitrarily sized images, for clarity of the exposition and

the theoretical analysis, we assume that the observed

images are square and contain step edges. Specifically,

consider the following idealized image formation model.

Let uc be a piecewise constant function defined on the
unit square [0, 1]2. The boundaries between adjacent

constant-valued regions are delineated by long, smooth

and potentially curved edges. The observed n×n noisy

image U is the result of impulse sampling of uc on a

regular lattice, corrupted by additive zero mean inde-

pendent Gaussian noise: for 1 ≤ i, j ≤ n,

U(i, j) = uc

(

i

n
,
j

n

)

+ ξ(i, j), ξ(i, j) ∼ N(0, σ2). (3)

For simplicity, we assume the noise variance σ2 is known.

When unknown, it can be estimated from the observed

image by various methods, see [20] and [21].

Given the noisy image U , our goal is to detect and
localize the step edges in it. Similar to [12], we wish

to do it in time sublinear in the total number of image
pixels. However, unlike this prior work which focused
exclusively on straight edges, we develop an algorithm
to detect curved smooth edges. On the theoretical front,

we study its performance, and establish the trade-off

between the overall time complexity of our algorithm

and its minimal detectable edge saliency.

Before proceeding, we first introduce some notations

and the signal-to-noise ratio (SNR) of a step edge.

Notations. For any z ∈ R, (z)+ = max(z, 0), ⌊z⌋ de-

notes the largest integer less than or equal to z, whereas

⌈z⌉ is the smallest integer larger than or equal to z.

For z1, z2 ∈ R, we write z1 ∧ z2 = min(z1, z2) and
z1 ∨ z2 = max(z1, z2). λ denotes the Lebesgue mea-

sure on R. The constant α in O(nα) is referred to as

the growth exponent. With some abuse of notation, I

may denote either an interval on the real line, [x1, xL],

or the image strip with columns x1, . . . , xL.

From continuous to discrete edges and their SNR. Con-

sider for simplicity an image whose corresponding func-
tion uc has two regions with different intensities, sepa-

rated by a single step edge defined by a function f ,

uc(x, y) = µ11y∈(f(x),1] + µ21y∈[0,f(x)], ∀(x, y) ∈ [0, 1]2.

According to the model (3), the edge f is dilated to
g : x ∈ [0, n] 7→ nf(x/n), and in the observed image

discretized to Γ (g) : i ∈ {1, . . . , n} 7→ ⌊g(i)⌋. We denote
the edge contrast by µΓ (g) = |µ1 − µ2|, and its signal-

to-noise ratio (SNR) by µΓ (g)/σ.

3 A strip-based approach

The constraint of a sublinear runtime implies that the

edge detection algorithm can process only a fraction of

all image pixels. To fix the idea, assume that for some
κ ∈ [0, 1), it observes O(n1+κ) out of the n2 image pix-

els. The first question is thus which pixels to process?

In [12], a related straight fiber detection problem

was studied. Under the assumption that an unknown

straight fiber spans the entire image width, it was shown

that under a worst-case scenario, sampling an equal

number of pixels in each of the n image rows is op-

timal for its detection. The reason is as follows. Con-

sider a sampling strategy which distributes its sampling

budget, say mn pixels, unevenly across the image rows.

Then there is at least one row with strictly less than m

observed pixels. As a result, this sampling scheme has

lower power for detecting a fiber that passes through

precisely this row. The same analysis carries over to

detecting curved fibers.

Admittedly, what is optimal for detecting fibers may

not be the same for detecting edges. Nonetheless, moti-

vated by the above argument, as in [12] we adopt a strip

based approach with O(nκ) whole columns. As outlined

in Algorithm 1 and illustrated in Fig. 2, our proposed

sublinear time curved edge detection method consists

of two main steps: (1) detect edges in a few strips ex-

tracted from the input image; (2) track the detected

edges outside the strips.
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Algorithm 1 Sublinear Curved Edge Detection
Input: an n× n noisy image
Parameters: noise level, mask width, number of strips,
detection strip width, detection false alarm rate, tracking
extension width, tracking false alarm rate.
Step 0: Extract several strips from the noisy image.
Step 1: Detect edges in each of the strips (using detection
false alarm rate).
Step 2: Track the detected edges (using tracking false
alarm rate).

Pixel responses. Most methods to detect step edges are

based on some discrete differentiation operator. Here

we use pixel responses, which for horizontal edges are

obtained by convolving the image with a vertical mask

of length 2ω consisting of ω ones and ω values of −1,

R(i, j) =
1√
2ω

j+ω
∑

k=j+1

(

U(i, k)− U(i, k − ω)
)

. (4)

For other choices of masks and edge filters, see for ex-

ample [24,28]. Clearly if a pixel (i, j) is at a verti-

cal distance of at least ω pixels from any edge, then
ER(i, j) = 0. In contrast, if there is only one edge g close

by, the signal of the pixel (i, j), defined as |ER(i, j)|, is

|ER(i, j)| = µΓ (g)√
2ω

(

ω − |j − ⌊g(i)⌋|
)

+
. (5)

In particular, assuming that all image edges are sep-

arated by at least ω pixels, and ignoring boundary ef-

fects, the convolution (4) creates a signal tube of verti-

cal width 2ω − 1 pixels around each edge g. Inside this
tube the signal peaks on Γ (g) and declines as the ver-
tical distance from it increases. Clearly, a large value

of ω is preferable for edge detection, as it leads to a

stronger signal on the edge. However, since real images

may contain edges separated by only a few pixels, too

large values of ω may blur adjacent edges. In practice,

ω is typically set to be an integer between 3 and 7.

Candidate curves and their edge responses. To locate

low contrast edges in very noisy images, the individ-

ual pixel responses (4) may not be very informative.

Rather, as in earlier works that handle high noise levels

[12,23], we sum several pixel responses to form an edge

response. Specifically, the edge response of a candidate

curve h : [x1, xL] 7→ [ω, n− ω] is defined as

R(h) =
1

σ
√
L

L
∑

k=1

R(xk, ⌊h(xk)⌋). (6)

Due to the normalizing factor 1
σ
√
L
, the random variable

R(h) has unit variance. Its expectation depends on the

distance between the candidate curve and the image

edges. If h is at a vertical distance larger than ω from
any edge, then ER(h) = 0. In contrast, if it is uniformly
close to an edge g, with supx∈[x1,xL] |g(x) − h(x)| ≤ γ,

for some integer γ < ω, then

|ER(h)| ≥ µΓ (g)

σ
·
√
L(ω − γ)√

2ω
. (7)

In particular, if h = g, then |ER(h)| = µΓ (g)

σ

√

Lω
2 .

Edge detection as hypothesis testing. Similar in spirit

to the a-contrario principle [7], we formulate edge de-

tection in a strip as a multiple hypothesis testing prob-

lem. Given a finite set S of candidate curves, the null

hypothesis is that the strip is edge-free and thus no
candidate curve in S traces a real edge. The alterna-

tive is that at least one, but possibly more candidate
curves h ∈ S trace actual edges. We compute the edge

responses of all h ∈ S, and retain for further analysis

only those with a statistically significant response.

4 Edge Regularity and Search Spaces

To employ the above hypothesis testing approach we

thus need to construct a suitable finite set S of candi-

date curves, referred to as a search space, devise a com-

putationally efficient method to compute all its edge re-

sponses, and a suitable threshold to retain only the sta-

tistically significant ones. On the one hand, the search

space S needs to be sufficiently large so that any im-

age edge is well approximated by one of its candidate

curves. On the other hand, to comply with the sublin-
ear time constraint, its size must be significantly smaller
than n2. For these two conflicting requirements to hold,

some regularity must be imposed on the edges. Similar
to [3], we consider the following class of smooth edges:

Definition 1 A function f : [0, 1] 7→ (0, 1) is b-regular

with b = (b1, b2, . . . , br+1) ∈ R
r+1
+ if it is at least (r+1)-

times differentiable and satisfies

‖f (k)‖∞
k!

≤ bk, k = 1, . . . , r + 1.

For future use, we denote the corresponding set of
dilated edges on the square [0, n]2 by

Rb,n={g | f is b-regular and g : x ∈ [0, n] 7→ nf( xn )}.

With detailed proofs in Appendix C, the main result of

this section (Theorem 1) is that for a sufficiently nar-

row strip, given a-priori knowledge of the vector b, we

can construct a search space S of quantized polynomi-

als, such that: (i) the worst-case approximation error
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inside the strip, supg∈Rb,n
minh∈S ‖g − h‖∞ is small;

and (ii) its size |S| ≪ n2. Properties (i) and (ii) allow

for detecting curved edges in sublinear time.

Search space of quantized polynomials. In our approach

we approximate curves by low degree polynomials. In-

deed, for any g ∈ Rb,n, |g(r+1)(x)| ≤ br+1(r+1)!/nr. If

this quantity is small, then by Taylor’s theorem, locally

g is well approximated by a degree r polynomial. As
there are infinitely many polynomials of degree r, we
quantize their coefficients to make them searchable.

Let x0, . . . , x2L be 2L + 1 consecutive integers. For
any g ∈ Rb,n, define its symmetric approximator over

the interval I = [x0, x2L] as

Ps
I,Mq

(g) =

r
∑

k=0

ak
Mq

( · − xL

L

)k

, (8)

where

ak =
⌊

g(k)(xL)LkMq

k! + 1
2

⌋

, k = 0, . . . , r (9)

and Mq is a positive integer which controls the level of

quantization. The following lemma quantifies how well

g is approximated by Ps
I,Mq

(g) in the interval I.

Lemma 1 Let g ∈ Rb,n and pq = Ps
I,Mq

(g) be its sym-

metric approximator. Their difference is bounded by

sup
x∈I

|pq(x)− g(x)| ≤ r + 1

2Mq
+

br+1

2(2n)r
λ(I)r+1. (10)

In the following, we consider intervals whose length in-

creases with image width n as λ(I) = O(nκ) for some

κ ∈ [0, 1). The second term in the error bound (10)
results from the polynomial approximation of g. If the

interval I is sufficiently short, namely κ ∈ [0, r
r+1 ), this

term tends to zero with n. The first term, due to coef-
ficient quantization (8), decreases as Mq is increased.

For the image strip I with columns x0, . . . , x2L, we
thus define its ideal search space as

S∗
p (b, I,Mq, n) = {Ps

I,Mq
(g) | g ∈ Rb,n}. (11)

Analyzing the exact size of the set (11) and the precise

vectors (a0, . . . , ar) that belong to it are difficult prob-
lems. Instead, we bound the individual coefficients.

Lemma 2 Let (a0, . . . , ar) be the coefficients of the sym-

metric approximator (8) of a function g ∈ Rb,n. Then,

a0 ∈ [0, nMq] and the higher order coefficients satisfy

|ak| ≤
⌊

bkλ(I)
kMq

2(2n)k−1
+

1

2

⌋

, k = 1, . . . , r. (12)

We denote by Sp(b, I,Mq, n) the set of quantized

polynomials whose coefficients satisfy the conditions of
Lemma 2 and name it the polynomial search space. By

definition, it contains the ideal search space (11). We

first quantify its size, as n → ∞, see also Fig. 3(a).

Lemma 3 The size of the polynomial search space of
a strip I of width O(nκ) scales with n as follows:
case (i): linear edges, b1 > 0, and bk = 0 for all k ≥ 2,

|Sp(b, I,Mq, n)| = O(n1+κ). (13)

case(ii): general curved edges, bk > 0 for all k = 1, . . . , r,

|Sp(b, I,Mq, n)| =
{

O(n1+κ) κ ∈ [0, 1
2 ]

O(n3κ) κ ∈ ( 12 ,
2
3 ]

(14)

Eqs. (14) and (13) show that up to κ ≤ 1/2, the search

spaces of straight or curved edges have comparable size.
For κ ∈ (1/2, 2/3], the curvature of edges is noticeable,

leading to a significantly larger search space. We stop κ
at 2/3 since the size of the search space is then O(n2),

implying that even with a single operation to process

each candidate curve, this would violate the sublinear

constraint. Furthermore, with κ < 2/3, Lemma 2 im-

plies that for sufficiently large n, ak = 0, for all k > 2.

In other words, the sublinear constraint means that

asymptotically in n, regardless of the smoothness vector
b, the search space contains quadratic polynomials.

Piecewise linear interpolation. From a computational
viewpoint, a strip of width L = O(

√
n), namely κ = 1/2

is already problematic: by Lemma 3, it contains O(n3/2)

candidate curves, and by Eq. (6), each edge response,

being a scaled sum of L individual pixel responses, re-
quires O(L) operations to compute. Hence, computing

all edge responses yields O(n2) operations per strip,

which contradicts the sublinear requirement.

To lower the computational cost, we further approx-

imate each polynomial curve by its piecewise linear in-

terpolant. This allows use of the line integral method

[4], which calculates the edge responses of all linear can-

didate curves in a strip in an efficient recursive manner.

Specifically, consider an interval I of length λ(I) =

2md, for some integers m and d, divided into 2m seg-

ments each of length d. We approximate each quantized
polynomial pq by its piecewise linear function ℓ(x) =
Im(pq)(x), which interpolates pq at the 2m + 1 equis-

paced points in the interval I. We denote the resulting
set of piecewise linear functions as the search space,

S(b, I,Mq,m, n)={Im(pq) | pq ∈ Sp(b, I,Mq, n)}.

To obtain the edge responses of all the candidate curves

in this search space, we proceed in two steps. First,
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(a) observed (b) detected (c) 1st tracking (d) fully tracked (e) sketch

Fig. 2 Curved edge detection on a 1000 × 1000 synthetic noisy image. (a) observed noisy image (SNR=1/2). (b) detected
edges in the strip delimited by blue columns. (c) output of the first tracking iteration. (d) fully-tracked edge estimates. (e)
one-pixel-wide sketch of the final output.

(a) (b)

Fig. 3 growth exponents of (a) the size of the polynomial
search space. (b) the time complexity to compute all the edge
responses associated to the polynomial search space.

we precompute all the linear edge responses in the 2m

strips and store them in the memory. Then, for each

candidate curve, we simply look up the edge responses

of its 2m linear pieces and output their scaled sum as

its edge response.

Our main result, stated in the theorem below, is

that: (i) the error of this piecewise linear interpolation

can be kept small; and (ii) computing all the edge re-

sponses can be done in sublinear time.

Theorem 1 Consider a strip I of width λ(I) = 2md

in an n × n image. Let S be the corresponding search

space of linearly interpolated symmetric approximators,

with spacing d. Then, for any g ∈ Rb,n, there is an
ℓ ∈ S such that inside the strip I,

‖ℓ− g‖∞ ≤ E1(b, I,Mq, n) + E2(b, I,Mq, n,m) (15)

where the two error bounds E1 and E2 are given by

E1 = r+1
2Mq

+ br+1

nr

(

λ(I)
2

)r+1

(16)

E2 = 1
8Mqm2

r
∑

k=2

k(k − 1)
⌊

bkλ(I)
kMq

2(2n)k−1 + 1
2

⌋

. (17)

For d = O(nκ∧1/2), the number of operations to com-

pute the edge responses of all candidate curves in S is
{

O(n1+κ log n), κ ∈ [0, 1
2 ]

O(n4κ−1/2), κ ∈ ( 12 ,
5
8 )

For κ ∈ [0, 5/8) and d = O(nκ∧1/2), the two error

terms are bounded by a constant independent of n.

5 Sublinear Multiscale Curved Edge Detection

We now provide a more detailed discussion of our strip-
based edge detection scheme. In Section 5.1, after a mo-
tivating example, we construct a multiscale search space

for a strip and describe the accompanying detection al-

gorithm, under the assumption that the strip contains

a single step edge. In Theorem 2 we show that under

certain conditions, with high probability, this algorithm

accurately estimates the unknown edge.
Section 5.2 is devoted to the second step of the algo-

rithm, namely tracking. We describe an iterative pro-

cedure which explores a small set of plausible exten-

sions to the edges estimated so far, and based on the

resulting edge responses, decides if and where to pro-

ceed. In Section 5.3 we show that the time complexity

of the tracking procedure is asymptotically negligible

compared to that of the detection step. Combining this

with its minimal detectable edge saliency (Lemma 5),

yields the trade-off between computational cost and sta-
tistical accuracy of our algorithm. Finally, in Section
5.4, we consider several practical issues and modify the

detection and tracking procedure accordingly, so that

the resulting algorithm can successfully detect edges in

real images.

5.1 Multiscale Strip-based Edge Detection

The approach outlined in Section 4 was based on two

components: (i) prior knowledge of edge smoothness;
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and (ii) computing edge responses in a wide strip, to

facilitate detection at low SNR settings.

Suppose, however, that some of the image edges

do not satisfy the assumed smoothness condition, and

are more wiggly than expected. Then no curves in the

search space can approximate these edges uniformly

well across a wide strip. In this case, a large strip width

is in fact detrimental to their detection.

For example, consider an L column strip containing

a single wiggly edge g. With a mask width ω = 1, the
expected edge response of a candidate curve h is pro-
portional to the number of pixels at which ⌊h⌋ = ⌊g⌋,

|ER(h)| = µΓ (g)√
2σ

· |{k ∈ {1, . . . , L}, ⌊h(xk)⌋ = ⌊g(xk)⌋}|√
L

.

In contrast, the pixel responses in any column of the
strip, precisely on the edge, have expected value

|ER(xk, ⌊g(xk)⌋)| =
µΓ (g)√

2σ
, k = 1, . . . , L.

Thus, if for all h ∈ S, the overlap with the wiggly edge

g is smaller than
√
L pixels, then the pixel responses are

more discriminative than the longer edge responses.

The moral of this example is significant: a short can-

didate curve can be better suited for detecting a wiggly

edge than a long one which approximates it poorly. In

fact, Lemma 2 shows that when the strip width is small,

a misspecified b2 has no effect on the resulting search

space. Specifically, with λ(I) <
√

2n
b2Mq

, it only contains

linear candidate curves because a2 = 0. Motivated by

this observation, we develop a multiscale scheme to de-

tect curved edges not only in the full strip, but also
in its sub-strips of various widths, while retaining the
sublinear computational efficiency.

Multiscale search space and detection procedure. Con-
sider a strip with L = 1 + 2J columns. We denote its

middle column as the scale 0 sub-strip while for s ≥ 1,
the scale s sub-strip is its 1 + 2s middle columns. The

strip maximal scale is J . Given a smoothness vector b,

we associate a search space to each of these J+1 nested
sub-strips. The scale 0 search space is composed of the

pixels of the middle column. The other search spaces

are constructed as described in the previous section.

Specifically, let Jd < J be a positive integer. A candi-
date curve in the search space at scale s ∈ {1, . . . , Jd}
has two linear pieces of length 2s−1 each, whereas for

s > Jd, it has 2s−Jd linear pieces of individual length

2Jd . See Fig. 4 for an illustration. This design keeps the

interpolation error under control by limiting the length

of each linear segment to at most d = 2Jd . As discussed

previously, we choose Jd such that 2Jd = O(nκ∧1/2).

Algorithm 2 Multiscale Edge Detection

1: Input: a (1 + 2J )-column strip with at most one edge.
2: Parameter: detection threshold τd.
3: for scale s = 0 to J do
4: Calculate edge responses R(ℓs) of all candidate curves

ℓs at scale s.
5: if maxℓs

|R(ℓs)| > τd then
6: Output ℓ̄s = argmaxℓs

|R(ℓs)| as the detected edge.
7: Set s∗ to s.
8: return
9: end if
10: end for
11: Set s∗ to +∞.

The union of the J + 1 search spaces is referred to

as the multiscale search space. With Is denoting the

interval corresponding to scale s, it is given by TJ :=

∪J
s=0S(b, Is,Mq,ms, n) where ms is 1 for s ≤ Jd and

2s−Jd−1 for s > Jd.

For analysis purposes, assume that the strip con-

tains a single step edge. As outlined in Algorithm 2,

the multiscale detection scheme works as follows: we

first compute all the edge responses at scale 0. If a can-

didate curve fires, that is, the absolute value of its edge
response exceeds a preset detection threshold, we stop

the procedure and keep the candidate curve with the

maximal absolute edge response as the estimated edge.

Otherwise, we proceed to the next scale. The first scale

at which some candidate curve fires is denoted s∗. If we
reach scale J and none of the scale J candidate curves

fired, we conclude that there is no edge in the strip, or

it is too weak to be detected, and set s∗ = +∞.

Detection threshold. Since all the edge responses are

Gaussian distributed with unit variance, by a standard

union bound argument we have the following result.

Lemma 4 Let α ∈ (0, 1). For any collection A of can-

didate curves, we have

P

(

max
h∈A

|R(h)− ER(h)| ≤
√

2 ln |A|
α

)

≥ 1− α. (18)

According to (18), in an edge-free strip, with probabil-

ity at least 1− α, all the edge responses are uniformly
bounded in absolute value by

√

2 ln(α−1|TJ |). However,

if an edge is indeed present, we not only want to reliably

decide that it exists, but also to accurately estimate it.

Hence we use a slightly higher detection threshold

τd = ∆+

√

2 ln |TJ |
α (19)

with say ∆ = 1. By construction, |TJ | and the size of

the search space at scale J are of the same order, which

implies that τd grows at rate O(
√
lnn).
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Fig. 4 An strip of J = 6 scales with Jd = 4. The columns confined by red, green and blue dashed lines correspond respectively
to its sub-strips at scale 1, 3 and 5. In each of these scales, a candidate curve was drawn in the same color. A candidate curve
at scale 6 has 4 linear pieces. Candidate curves at scale s ≤ Jd + 1 have only 2 linear pieces of length 2s−1 each.

Minimal detectable edge SNR. With the threshold (19),

we can derive the minimal edge SNR above which any

dilated b-regular edge can be detected with overwhelm-

ing probability.

Lemma 5 In a strip of O(nκ) columns, with κ ∈ [0, 5/8),

the minimal detectable SNR of a dilated b-regular edge

decreases at rate O(n−κ/2
√
lnn).

Asymptotic performance guarantee. The selected thresh-

old controls the firing of false alarms in the background.

But we also need to guarantee the candidate curves that

do fire are well aligned with the true edge. We thus de-
fine the covering ratio as the proportion of a candidate

curve covered by the signal tube of the edge.

Definition 2 Let {x1, x2, . . . , xL} be L consecutive in-
tegers. Let h be a curve defined on the interval [x1, xL].

Its covering ratio with respect to a function g ∈ Rb,n is

ρ(g, h) =
1

L

L
∑

k=1

1|h(xk)−g(xk)|≤ω−1.

To shorten the notation, we write the error terms (16)

and (17) in Theorem 1 as E1(I) and E2(I,m). Clearly,

max1≤s≤J E1(Is)+E2(Is,ms) is small when n is large.
Hence, we assume that for some integer γ∗ ≤ ω − 1

max
1≤s≤J

E1(Is) + E2(Is,ms) ≤ γ∗ (20)

Under this assumption, we have the following result.

Theorem 2 Let (s∗, ℓ̄s∗) be the output of Algorithm 2

with a fixed false alarm rate α, on a strip of width O(nκ)

with κ ∈ [0, 5/8), that contains a single edge g ∈ Rb,n.
Then, for any ǫ > 0, δ > α, and n sufficiently large,

with probability at least 1−δ, either no candidate curve
fired up to scale J (s∗ = +∞) or the output curve ℓ̄s∗

has a covering ratio at least ω−1(ω − γ∗)(1 − ǫ). For-

mally, the following event has probability at least 1− δ

{

s∗ = +∞
}

∪
{

s∗ < +∞, ρ(g, ℓ̄s∗) >
ω − γ∗

ω
(1− ǫ)

}

.

5.2 Edge Tracking

After detecting parts of edges in a few strips using Algo-

rithm 2, we apply an iterative tracking procedure that

extends them outside the strips. As detailed below, our

tracking method relies on the assumed edge smooth-
ness to sample a small window adjacent to the current
estimated end location of the detected edge.

Tracking procedure. For simplicity, we still assume that
the image contains a single edge. Let (s∗, ℓ̄s∗) be the

output of Algorithm 2 on an image strip. If s∗ = ∞,

there is no edge to track. Otherwise, with some abuse

of notation, let I0 denote the interval corresponding to

the scale s∗. To its right, define consecutive tracking
intervals Ii = [x̄i, x̄i+1] of length λ(Ii) = Ltrack, i ≥ 1.

As outlined in Algorithm 3, starting from I1, we iter-
atively extend the edge estimate to the right. Denote by

p0 the polynomial curve on I0 whose linear interpolant

is ℓ̄s∗ . At the first iteration, given p0 and the vector b,

we construct a set of polynomial candidate curves on

I1, referred to as p0’s smooth extensions N1(p0). From

this set we select the curve p1 with the largest edge

response in absolute value. If |R(p1)| exceeds a preset
tracking threshold, p1 is accepted as a valid extension

and tracking continues onto I2 with p1 taking up the

role of p0. Otherwise, we reject p1 and stop the tracking.
The role of the tracking threshold is to avoid track-

ing non-existant edges. Specifically, let Ig denote the do-

main of definition of an edge g with I0 ⊂ Ig. Then ide-
ally, tracking should stop at i∗ = min{i ≥ 1, Ig∩Ii = ∅}.
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Since the number of tracking intervals can poten-

tially be O(n), extreme noise variations of similar mag-
nitude as the detection threshold τd should be expected.
Unlike in detection, in the tracking phase candidate

curves are mostly concentrated around the true edge.

As a single poorly selected extension could derail the

whole tracking process, it is desirable to let good can-

didate curves have larger expected edge responses. By
Eq. (7), we thus use longer interval domains for track-
ing. Specifically, we let

Ltrack =

{

2t, s∗ = 0

2tλ(I0), s∗ > 0
(21)

for some constant integer t ≥ 0, called scale offset, In

our experiments we used t = 1.

Algorithm 3 Rightward Edge Tracking
1: Input: a polynomial curve p0 and m tracking intervals.
2: Parameter: tracking false alarm rate.
3: for i = 0 to m do
4: Determine pi’s set of smooth extensions Ni+1(pi).
5: Set the tracking threshold τi+1.
6: Calculate all the edge responses for Ni+1(pi).
7: Find pi+1 = argmaxh∈Ni+1(pi)

|R(h)|.
8: if |R(pi+1)| ≤ τi+1 then
9: Reject pi+1.
10: Abort.
11: end if
12: end for

Edge responses and tracking threshold. A good track-

ing threshold stops tracking neither too early nor too

late. To help set such a threshold, in rightward tracking

the edge response of a candidate curve on [x̄i, x̄i+1] is

based on its values at {x̄i+1, x̄i+2, . . . , x̄i+1}, exclud-
ing the leftmost point. As noise in different columns

is independent, this way, the calculated edge responses
are independent of the previous ones leading up to it.
Lemma 4 then implies the following result:

Lemma 6 Let Ig denote the domain of an edge g and

i∗ = min{i ≥ 1, Ig ∩ Ii = ∅} the index of the first edge-
free tracking interval. For i ≥ 1, the tracking threshold

τi =

√

2 ln
|Ni(pi−1)|

α
(22)

ensures that the probability of the tracking procedure to

continue beyond i∗ intervals is at most α.

Smooth extensions. For all i ≥ 0, since we choose the

extension pi+1 from the set Ni+1(pi), ideally it should

contain at least one candidate curve uniformly close to

the edge on Ii+1 with high probability. To construct

such a set, we ask the following questions: (1) if pi is
a quantized polynomial approximator of the edge g on
Ii, how can we use pi to track g on Ii+1? (2) what if

this assumption of pi does not hold?

For simplicity, consider the problem of constructing
N1(p0) when I0 is degenerate, namely x̄0 = x̄1. This sit-

uation arises when some pixel fires in the middle column

of the detection strip and p0 is reduced to a quantized

constant. To answer the first question, assume that we

know the quantized location of the edge at x̄1

a′0
Mq

, a′0 =

⌊

g(x̄1)Mq +
1

2

⌋

(23)

Our goal is to specify a set of quantized polynomials
which contains the following approximator of g on I1

r
∑

k=0

ak
Mq

( · − x̄1

λ(I1)

)k

with ak =
⌊

g(k)(x̄1)λ(I1)
kMq

k! + 1
2

⌋

.

(24)

This is not the symmetric approximator defined in (8)

because the corresponding Taylor series of g is expanded

about the left endpoint of the interval I1. We call this

the asymmetric approximator of g on I1 and denote it

by Pa
I1,Mq

(g). This polynomial representation is more

useful than its symmetric counterpart because for it to

pass through (x̄1, a
′
0/Mq), we only need to set a0 = a′0.

Furthermore, since g is b-regular, by Lemma 2

|ak| ≤
⌊

bkλ(I1)
kMq

nk−1
+

1

2

⌋

, k = 1, . . . r. (25)

Hence, Pa
I1,Mq

(g) belongs to the set of asymmetric poly-

nomials on I1 whose coefficients satisfy Eq. (25) and
a0 = a′0, which we call the oracle extensions of g on I1.

In practice, we do not know a′0. However, Theorem

2 shows that the estimate p0 approximates the edge

well over its domain of definition. In particular, in the
present degenerate case, with high probability the pixel

(x̄1, ⌊p0⌋) belongs to the signal tube, and thus satisfies

|⌊g(x̄1)⌋− ⌊p0⌋| ≤ ω− 1 . Hence, with high probability,

a0 ∈
⋃

|c−⌊p0⌋|≤ω−1

[cMq, (c+ 1)Mq] (26)

since by Eq. (23), ⌊g(x̄1)⌋Mq ≤ a′0 ≤ ⌊g(x̄1)⌋Mq +Mq.

As a result, we choose N1(p0) as the set of asym-
metric polynomials whose coefficients satisfy Eq. (25)

and (26). In simple words, N1(p0) is thus the union of

several vertically shifted oracle extensions.

Next, consider the case where the detected candi-

date curve p0 is non-degenerate, namely, λ(I0) > 0. Our

goal is still to construct a set N1(p0) which contains
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Pa
I1,Mq

(g) with high probability. First assume analo-
gously that we know the symmetric approximator

Ps
I0,Mq

(g) =

r
∑

k=0

a′k
Mq

( · − x̄0+x̄1

2

λ(I0)/2

)k

with

a′k =

⌊

g(k)(x̄1)λ(I0)
kMq

2kk!
+

1

2

⌋

, k = 0, . . . , r.

Since pq = Ps
I0,Mq

(g) does not uniquely characterize a

curved edge g in general, we define the polynomials

E1 (pq) =
{

Pa
I1,Mq

(g′), g′ ∈ Rb,n and Ps
I0,Mq

(g′) = pq

}

each of which may serve as a valid extension. To de-

scribe them, we observe that Ps
I0,Mq

(g), when restricted

to [ x̄0+x̄1

2 , x̄1], namely the right half of the interval I0,
is the asymmetric approximator of the edge g on that

interval of length λ(I0)/2. As a result, Ps
I0,Mq

(g) and

Pa
I1,Mq

(g) can be related in terms of their coefficients

thanks to the following lemma.

Lemma 7 Let p
(0)
q and p

(1)
q be the asymmetric approx-

imators of a function g ∈ Rb,n on the adjacent intervals
I ′0 = [x′

0, x
′
1] and I ′1 = [x′

1, x
′
2]

p(i)q (x) =

r
∑

k=0

a
(i)
k

Mq

(

x− x′
i

λ(I ′i)

)k

, i = 0, 1.

Then, the constant term of p
(1)
q satisfies

∣

∣

∣

∣

∣

a
(1)
0

Mq
− p(0)q (x′

1)

∣

∣

∣

∣

∣

≤ r + 2

2Mq
+

br+1

nr
λ(I ′0)

r+1 (27)

and its higher order coefficients satisfy for k = 1, . . . , r
∣

∣

∣
a
(1)
k − a

(0)
k

λ(I′
1)

k

λ(I′
0)

k

∣

∣

∣
≤ 1

2 (1 +
λ(I′

1)
k

λ(I′
0)

k ) +Q (28)

where Q =
Mqλ(I

′
1)

k

nk−1 min(2bk, (k + 1)bk+1
λ(I′

0)
n ).

The scaling factor
λ(I′

1)
λ(I′

0)
relates the two adjacent

asymmetric approximators of different lengths. For il-

lustrative purposes, consider the implications of this

lemma when the edge g is assumed linear and the scal-

ing factor is 1, namely λ(I ′0) = λ(I ′1). Here, Eq. (28)

simplifies to |a(1)1 − a
(0)
1 | ≤ 1 since b2 = 0. Hence, given

a
(0)
1 , the number of possible values for a

(1)
1 is 3, a sub-

stantial reduction from 1+2b1Mqλ(I
′
1) as an exhaustive

approach would imply. Similar to the degenerate case,
additional computational saving is obtained thanks to

the reduced uncertainty on a
(1)
0 as shown by Eq. (27).

Given p
(0)
q on I ′0, the collection of asymmetric poly-

nomials p
(1)
q whose coefficients satisfy Eq. (27) and (28)

are referred to as its oracle extensions on I ′1. By this

lemma, we can thus construct the oracle extensions of

the symmetric approximator pq = Ps
I0,Mq

(g) which con-
tain E1(pq).

However, Ps
I0,Mq

(g) is not known in practice because

the detected edge p0 is only guaranteed to be high cov-

ering asymptotically (Theorem 2). Assume ρ(g, p0) ≥ ρ
for some ρ > 0. Then Ps

I0,Mq
(g) must belong to

Bρ(p0) = {Ps
I0,Mq

(g′), g′ ∈ Rb,n with ρ(g′, p0) ≥ ρ}.

Its rationale echoes that of Eq. (26). Consequently, we

obtain the smooth extensions

N1(p0) =
⋃

pq∈Bρ(p0)

E1 (pq) .

As it is difficult to derive a tight superset for Bρ(p0),
we heuristically replace it by a small set of vertically

shifted p0, for instance, {p0 − 1, p0, p0 + 1}.

5.3 Sublinear Complexity

Tracking has a lower complexity than detection. Specif-
ically, when bk > 0, k = 1, . . . , r, by definition (21), the
length of a tracking interval Ltrack is at most O(nκ),

and all the intervals Ii have the same length except for

i = 0. Then Lemma 7 implies

|Ni+1(pi)| ≤ C(b,Mq) · n(2κ−1)∨0, i ≥ 0.

With at most n/λ(Ii) = O(n1−κ) tracking intervals,
the algorithm goes over at most O(n(1−κ)∨κ) smooth

extensions. As it takes O(nκ) operations to calculate

the edge response of a smooth extension, tracking takes
at most O(n1∨2κ) operations, which is asymptotically

small compared to that of detection (Theorem 1). In

other words, the overall runtime of the algorithm is de-

termined by its detection step.
The same conclusion holds for straight edges, where

b1 > 0 and bk = 0 for k ≥ 2. Here, the time com-

plexity for tracking is O(n), again smaller compared to

O(n1+κ log n), κ ∈ [0, 1) needed for detection.

5.4 Multiple Edges and Other Practical Issues

Several modifications are needed before our algorithm

can be applied to natural images.

Multiple edges and nonmaximal suppression. Real im-

ages typically contain multiple edges of different con-

trasts. The detection algorithm thus cannot stop at

the first scale where a candidate curve fired. Instead

it should go over all the nested sub-strips. Our analy-

sis shows that if a dilated b-regular edge is detected at



Detecting curved edges in sublinear time 11

scale s, it is likely to be detected at scale s+1, too. To

minimize the number of times tracking is invoked, we
should keep only one candidate curve for each true edge
in the detection strip. To this end, we identify each de-

tected curve in the strip with the pixel it passes through

in the middle column and group the detected edges by

their position and the sign of their edge responses using

the connected component algorithm. For each resulting
group, we then select the shortest candidate curve with
the strongest edge response as its representative.

To detect edges that do not span the whole image

width, we extract from the image several equidistant
vertical strips, and then track the detected edges right-

ward till we reach an adjacent strip or the image border.
Leftward tracking is done in a similar manner. To han-
dle those nearly vertical edges, we transpose the image

and repeat the same procedure. This amounts to ex-

tracting horizontal detection strips from the original

image and then tracking upward/downward.

Consistency test. Edge response, though informative,

cannot be used as the only criterion for judging the

saliency of a candidate curve. In particular, it cannot

rule out broken edges. As detailed in Appendix A, we

use a χ2 consistency test to check if the pixel responses

of a candidate curve are sufficiently uniform. This test

not only reduces the number of spurious edges produced

in the detection stage, but also enhances the robust-

ness of the tracking procedure by eliminating candidate

curves that deviate significantly from the true edge.

Post-processing. Ideally, tracking should stop at itera-
tion i∗ = min{i ≥ 1, Ig ∩ Ii 6= ∅}. In practice, the last
tracking interval may partially extend beyond the end

of the edge, Ii∗\Ig 6= ∅. Consequently, the last extension
needs to be trimmed so the final output accurately re-

flects the true extent of the edges. Appendix B describes

an endpoint location procedure for this purpose.

The actual detection and tracking procedure are
summarized in Algorithm 4 and 5.

6 Experiments

We demonstrate the performance of our algorithm on
both synthetic and natural images. In all experiments,
the detection and tracking false alarm rates were set

to 10−5 and 10−4, respectively. Also fixed were the in-

terpolation spacing d = 8, the quantization parameter

Mq = 1, the scale offset t = 1, and the smoothness

vector b = (3, 10, 10), which means that all candidate

curves were quadratic polynomials.

Algorithm 4 Multiscale Edge Detection

1: Input: a noisy (1 + 2J )-column strip.
2: Output: a list of detected polynomial edges in the strip.
3: Parameter: detection false positive rate αd.
4: Calculate the edge responses at all the scales s = 0, . . . , J .
5: Set the detection threshold τd according to Eq. (18).
6: Remove the candidate curves whose edge responses are

smaller than τd in absolute value.
7: Group the remaining candidates according to their posi-

tion and the sign of their edge responses.
8: For each group, pick the shortest candidate curve with

the largest response in absolute value.
9: Subject these candidate curves to the consistency test and

output those passing the test.

Algorithm 5 Rightward Edge Tracking
1: Input: a list of polynomial candidate curves and m track-

ing intervals.
2: Output: a list of smooth extension sequences.
3: Parameter: tracking false positive rate αt.
4: for each detected polynomial candidate curve p0 do
5: for i = 0 to m do
6: Determine pi’s smooth extensions Ni+1(pi).
7: Set the tracking threshold τi+1 by Eq. (22).
8: for each candidate curve in Ni+1(pi) do
9: Subject it to the consistency test.
10: Calculate its edge response.
11: Remove it from Ni+1(pi) if (1) it fails the test or

(2) its edge response has different sign from p0.
12: end for
13: Find pi+1 = argmaxh∈Ni+1(pi)

|R(h)|.
14: if |R(pi+1)| ≤ τi+1 then
15: Reject pi+1.
16: Abort.
17: else
18: Trim pi using the endpoint location procedure.
19: end if
20: end for
21: end for

First, we compared the runtime of the detection and

tracking steps of our sublinear algorithm on two se-

quences of synthetic square images of increasing sizes,

corrupted by additive Gaussian noise with σ = 100. The

first sequence of images contained only noise. Hence,

with high probability the detection algorithm found no

edges and the tracking step was not invoked. In the sec-

ond sequence, the images contained one step edge along

their diagonal with edge contrast 200 and SNR = 2,

separating two constant valued triangles. In these im-

ages, both detection and tracking would run.

Our algorithm examined a single strip of scale J = 5

from the middle of each input image with mask width

ω = 3 and tracked detected edges to both the left
and right sides of the strip. For comparison we also

ran the line segment detector (LSD) [30,9] and the

Canny edge detector. To make them yield good results

on noisy images, their default parameters were modi-
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fied to [low, high] = [0.32, 0.62] (Canny) and [S,Σ] =

[0.17, 0.8] (LSD). All algorithms ran on a single CPU.
The run-time results in Fig. 5, averaged over 10 in-

dependent runs, show that our algorithm is indeed sub-

linear in the image size while both Canny and LSD are

linear. We also see that, consistent with our theoretical

analysis, tracking is faster than detection.

Next we tested our algorithm on two 1000 × 1000
synthetic images with edge SNR equal to 1 and 2 (Fig.

6). One horizontal and one vertical image strip were

used for edge detection. We estimated the noise level

from these two strips by the median absolute deviation

estimator [26] and ran the algorithm with ω = 7 and
J = 6. The results show that under a weak SNR, our

sublinear algorithm, thanks to its ability to account for

curved edges, was less prone to false alarm than Canny

and more robust compared with LSD.

To apply our algorithm to natural images, we need

to estimate the noise level. However, when only con-

trasted edges are of interest, we may simply tell the

algorithm which noise level to use without actually es-

timating it. In this way, a higher noise level input trans-

lates into edge outputs with starker contrast. We used

this method for detecting edges in Fig. 7, 8 and 9. In

these experiments, we extracted eight detection strips

(four equidistant horizontal strips and four vertical ones)

with J = 5. Input noise level σ was selected with the fol-

lowing rule of thumb: in smooth and poorly contrasted

images, such as Fig. 8(a) and 9(a), we set σ = 3. Other-

wise, we used σ = 20 to put a focus on more contrasted

edges. The mask width ω was adjusted in a small range,

between 3 and 7.

7 Discussion and Future Work

We have shown how multiple smooth curved edges can

be tracked in noisy images in sublinear time, assum-

ing the edges intersect one of the detection strips. An

initial multiscale search in a detection strip triggers a
detection. The search involves tests on a finite family of
polynomial curves of increasing length, where the larger

the length the lower the contrast at which a test reli-

ably fires. A detection initializes a tracking step that ex-

tends the initial detection along the edge. Due to prior

assumptions on the smoothness of the edges, tracking

is very efficient since each edge segment can only be ex-
tended in a limited number of ways. If the edge has high
contrast, a test fires early in the multiscale search and

immediately triggers the tracking algorithm. If the edge

has lower contrast, it is detected later in the multiscale

search, in a wider sub-strip.
Local edge detection algorithms that do not make

prior assumptions on the edges necessarily require com-

putation time at least linear in the number of pixels.

Depending on their parameter settings, they may either
yield multiple false alarms or many of the true edges are
missed. In contrast, our method makes use of the prior

assumption of smoothness to track the edges in sublin-

ear time and can handle smooth low SNR edges with

virtually no false alarms.

We provided a theoretical analysis of the computa-

tional load of the detection and tracking parts of the

algorithm. For the detection part we also carried out a

statistical analysis showing that with high probability

the only curves that fire have a significant overlap with

the true edge. We also provided the minimal contrast

at which an edge will be detected.

In terms of future research, we believe it is possible
to extend the probabilistic analysis to the tracking part

of the algorithm to control the probability of tracking

the entire edge reliably. Furthermore, with more refined

estimates on the covering properties of the test with

maximal response around an edge, we believe it will be

possible to provide analytic expressions for the upper

and lower bounds on the coefficients of the smooth ex-

tensions that are guaranteed to contain highly covering

curves in the next tracking interval. Currently we use a

heuristic to define this set of coefficients.

An additional aspect of our method is the orga-

nization of the computation in an easy to hard man-

ner. Easy high-contrast edges are detected early and

are tracked immediately. The weakly contrasted edges

come later. The computational load of the easy part is

much smaller than the total. In the future, we also want
to extend this principle further to organize the type of

edges that are tracked in the same manner. In other

words the computation would be organized so that in

a natural manner high contrast straight or very slowly

varying edges are detected first, then in some order the

more wiggly and low-contrast edges are brought into

the computation. The advantage of this easy to hard
organization of the computation is that if it is inter-

rupted early, it may still provide much valuable infor-

mation about the image. Furthermore, it is also possible

to stop it, once relevant information, depending on the

particular application, has already been found.

The need to keep the computation sublinear using

the line integral algorithm led to the division of the

interval into 2m subintervals requiring O(n4κ−1/2) op-

erations when κ ∈ (1/2, 5/8) (see proof of Theorem 1).
We believe there may be a recursive computation of

the sums over all curves on the domain, using dyadic

decompositions that could be achieved in O(n3κ log n)

operations - i.e. the number of curves up to a log fac-

tor - at the cost of a larger approximation width. This

would then allow for sublinear edge detection over the
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(a) (b)

Fig. 5 Runtime comparison (a) on pure noise images (σ = 100); (b) on noisy images containing a diagonal step edge (SNR=2).
In agreement with our theoretical analysis that tracking is significantly faster than detection, the empirical runtime of the
sublinear algorithm is only slightly higher on the images with an edge than on the noise-free images.

(a) observed (SNR=2) (b) sublinear (c) sublinear sketch (d) LSD sketch (e) Canny sketch

(f) observed (SNR=1) (g) sublinear (h) sublinear sketch (i) LSD sketch (j) Canny sketch

Fig. 6 Curved edge detection on 1000× 1000 synthetic noisy images. Top and bottom row shows respectively detected edges
by our sublinear algorithm from two strips, LSD and Canny in (a) and (f).

entire range κ ∈ [0, 2/3), instead of the current upper

bound of 5/8.

Finally, a study of fundamental lower bounds on the
number of operations needed to detect curved edges of

various possible lengths, contrasts and smoothness pa-

rameters, and minimax lower bounds on the detectable

edge SNR under computational constraints are chal-

lenging topics for further research.

A Consistency test

Let (yk)1≤k≤L be a Gaussian random vector

yk = µk + ξk, k = 1, . . . , L

where the noise terms (ξk)1≤k≤L are i.i.d. of zero mean and
known variance σ2. Under the null hypothesis, its mean vec-
tor satisfies µ1 = µ2 = . . . = µL. Then the test statistic

T =
1

σ2

L
∑

k=1

(

yk − 1

L

L
∑

i=1

yi

)2

follows the chi-squared distribution with L − 1 degrees of
freedom. We reject the null hypothesis when

T ≥ L− 1 + 2 ln δ−1 + 2
√

(L− 1) ln δ−1.

The false positive rate of this test is at most δ by the tail
bound [19]

∀t > 0, P

(

T − (L− 1)

L− 1
≥ 2t+ 2

√
t

)

≤ e−(L−1)t.
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(a) original (b) detected

(c) tracked (d) sketch

Fig. 7 Curved edge detection in a natural image (ω = 3, σ = 20). (a) original image (1280× 960). (b) detected edges in four
equidistant strips of equal width (J = 5). Depending on their contrast, the edges were detected at different scales. (c) edges
tracked from the detected segments in (b) and in four equidistant horizontal detection strips (not shown). (d) final sketch.

B Endpoint location

The problem of locating the endpoint t of a candidate edge
given its valies on an interval of length L can be formulated
as follows: let (yk)1≤k≤L be a Gaussian random vector

yk = µ · 1k≤t + ξk, k = 1, . . . , L

where the noise terms (ξk)1≤k≤L are i.i.d., with zero mean
and known variance σ2, but the endpoint t and the contrast
µ 6= 0 are unknown. Their maximum likelihood estimates are

max
µ,t

log p(y1, . . . , yL) = min
µ,t





t
∑

k=1

(yk − µ)2 +

L
∑

k=t+1

y2k





= min
µ,t

(

µ2t− 2µ
t
∑

k=1

yk

)

.

In particular, the estimated endpoint is

t∗ = argmax
1≤t≤L

(
∑t

k=1 yk
)2

t
.

C Proofs

Proof (of Lemma 1) Let p(x) be the degree r Taylor expan-
sion of g around the center xL of I = [x0, x2L],

p(x) =

r
∑

k=0

g(k)(xL)

k!
(x− xL)k.

Since L = λ(I)/2, its approximation error satisfies

sup
x∈I

|p(x)− g(x)| ≤ br+1

nr
Lr+1.

It follows from the coefficient quantization formula (8)

∣

∣

∣

∣

ak

MqLk
− g(k)(xL)

k!

∣

∣

∣

∣

≤ 1

2MqLk
, k = 0, . . . , r.

Hence, writing pq = Ps
I,Mq

(g), we find

sup
x∈I

|p(x)− pq(x)| ≤
r + 1

2Mq
.

An application of the triangle inequality concludes the proof.

Proof (of Lemma 2) By definition, for each g ∈ Rb,n, there
is a b-regular function f such that g(x) = nf(x/n). According
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(a) original (b) detected

(c) tracked (d) sketch

Fig. 8 Curved edge detection in a natural image (ω = 3, σ = 3). (a) original image (1024 × 768). (b) detected edges in four
equidistant strips of equal width (J = 5). From the detection of the lane markings in different strips, we see again that the
more contrasted an edge is, the easier it is to be detected, that is, at a lower scale. (c) edges tracked from the detected segments
in (b) and from four equidistant horizontal strips (not shown). (d) final sketch.

to (8), the coefficients of its symmetric approximator are

ak =

⌊

f(k)(c/n)λ(I)kMq

k!2(2n)k−1
+

1

2

⌋

, k = 1, . . . , r.

Since |⌊z + 1
2
⌋| ≤ |z|+ 1

2
holds for all z ∈ R, we deduce

|ak| ≤
∣

∣

∣

∣

f(k)(c/n)λ(I)kMq

k!2(2n)k−1

∣

∣

∣

∣

+
1

2
, k = 1, . . . , r.

Now, since f is b-regular,

|ak| ≤
bkλ(I)kMq

2(2n)k−1
+

1

2
k = 1, . . . , r

As the coefficients ak are all integer valued, Eq. (12) follows.

Proof (of Lemma 3) First consider the case where b1 > 0 and
bk = 0 for k ≥ 2. This corresponds to the prior assumption
that image edges can be well approximated by straight seg-
ments. In this case, the coefficient a0 can have nMq different
values, whereas by Eq. (12), the coefficient a1 can have ap-
proximately b1Mqnκ/2 different values, and ak = 0 for k ≥ 2.
Hence, in this case, the polynomial search space has O(n1+κ)
candidate curves which are all linear.

Next, consider the general case of curved smooth edges
with bk > 0, k = 1, . . . , r. Here, as above the coefficients a0

and a1 still have O(n) and O(nκ) possible values. By Eq. (12),
the higher order coefficients have O(nkκ/nk−1) possibilities,
of course provided that 1+k(κ−1) ≥ 0, otherwise they have a
constant number of possible values, independent of n. Hence
in the general case its size is O

(

nκ+1+
∑r

k=2
(1+k(κ−1))+

)

.
Let us analyze the behavior of this expression. For κ ∈

[0, 1/2], for all k ≥ 2, 1+k(κ−1) ≤ 0 and we obtain O(n1+κ).
For κ ∈ [1/2, 2/3] the term with k = 2 also contributes and
yields an overall size O(n3κ). A value of κ > 2/3 yields a
search space of size larger than O(n2) and thus not relevant
for sublinear edge detection. Thus, Eq. (14) follows.

Next, to prove Theorem 1 we shall make use of the fol-
lowing two auxiliary results:

Lemma 8 Let h(z) be a twice differentiable function defined
on a closed interval [z1, z2]. Let l(z) be its linear interpolant
such that l(zi) = h(zi), i = 1, 2. Then

sup
z∈[z1,z2]

|h(z)− l(z)| ≤ (z2 − z1)2

8
sup

z∈[z1,z2]

|h(2)(z)|.

Proof Define for any t ∈ (z1, z2)

At(z) = h(z)− l(z)− h(t)− l(t)

(t− z1)(t− z2)
(z − z1)(z − z2).
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(a) original (b) processed

(c) original (d) processed

Fig. 9 Curved edge detection in natural images. (b) and (d) show edges detected from (a) (4320×2000) and (c) (2416×1836)
respectively. All the detection strips had scale J = 5. For image (a), the mask width and the noise level were set to ω = 4, σ = 3
while for image (c), ω = 5, σ = 20.

By construction, At(z) is twice differentiable and has at least
three roots {z1, t, z2}. Applying Rolle’s theorem twice, there

exists θt ∈ (z1, z2) such that A
(2)
t (θt) = 0 or equivalently

h(2)(θt)− 2
h(t)− l(t)

(t− z1)(t− z2)
= 0.

It follows that

|h(t)− l(t)| ≤ (z2 − z1)2

8
sup

z∈[z1,z2]

|h(2)(z)|.

Lemma 9 Assume λ(I) = 2md for some integers d and m.
Let (x′

k)0≤k≤2m be the 2m+1 equally spaced integers with a
spacing of d in the interval I = [x′

0, x
′
2m]. For any function

g ∈ Rb,n, let pq be its symmetric approximator of degree r
on the same interval. Then the piecewise linear function ℓ
that interpolates pq at the grid points {x′

0, . . . , x
′
2m} satisfies

sup
x∈I

|ℓ(x)− pq(x)| ≤ 1
8Mqm2

r
∑

k=2

k(k − 1)
⌊

bkλ(I)kMq

2(2n)k−1 + 1
2

⌋

.

Proof (of Lemma 9) Since the piecewise linear approximation
ℓ(x) interpolates the polynomial pq at 2m + 1 equidistant
points of the interval I, it follows from Lemma 8 that

sup
x∈I

|pq(x)− ℓ(x)| ≤ d2

8
sup
x∈I

|p(2)q (x)| (29)

Combining this with the definition of pq(x), Eq. (8) and the
fact that L = md gives that

sup
x∈I

|pq(x)− ℓ(x)| ≤ 1

8Mqm2

r
∑

k=2

|ak|k(k − 1).

The bound (12) on the coefficients ak yields the lemma.

Proof (of Theorem 1) Let g ∈ Rb,n, let pq be its symmetric
approximator and let ℓ(x) be its piecewise linear interpolant.
By the triangle inequality in the interval I,

‖g − ℓ‖∞ ≤ ‖g − pq‖∞ + ‖pq − ℓ‖∞

By Lemma 1, the first term on the right hand side is bounded
by (16), whereas by Lemma 9 the second term is bounded by
(17). Hence, Eq. (15) of the theorem readily follows.

Next, let us consider how large can the spacing d be.
On the one hand we would like d to be as large as possible,
as this leads to significant gains in the runtime of the line
integral algorithm [4]. In details, this method calculates the
edge responses of all the linear candidate curves in a d × n
strip, in O(nd log d) operations instead of O(nd2) by the naive
method. While this recursion may induce an approximation
error [4], at high noise levels its effect is negligible.

Now on the other hand, a larger spacing d yields a larger
approximation error of the piecewise linear interpolation. For
large values of n, the asymptotically dominant error term in
(17) is the first summand with k = 2. This error term is
approximately equal to b2d2/(4n). More precisely,

∣

∣

∣

∣

1

4Mqm2

⌊

b2λ(I)2Mq

4n
+

1

2

⌋

− b2d2

4n

∣

∣

∣

∣

≤ 1

8Mqm2
.

For this term to be small, the spacing d should thus grow no
faster than O(

√
n).

Armed with these results, we now consider the number
of operations to calculate all the edge responses of linearly
interpolated candidate curves in the polynomial search space.
Since the edge response of each candidate curve is a scaled
sum of the 2m edge responses of its linear pieces, we first
calculate all the linear edge responses in the 2m contiguous
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sub-strips of width d each and then sum them accordingly to
form the final output.

The first step costs O(mnd log d) operations. For the sec-
ond step, consider first the case κ ∈ (1/2, 2/3). According to
(14), the number of polynomial candidate curves is O(n3κ).
Hence computing their edge responses requires O(mn3κ) ad-
ditional operations. Since λ(I) = 2md, the overall complexity
is O(mnd log d + mn3κ) = O(n1+κ log d + n4κ/d). To min-
imize the complexity without sacrificing accuracy, we thus
choose d = O(

√
n). At this value of d the first term is neg-

ligible, and the overall complexity is O(n4κ−1/2). For κ ∈
[0, 1/2], a similar analysis shows that with d = O(nκ), the
complexity is O(n1+κ logn). As a result, the sublinear con-
straint implies an upper bound on the strip width κ ∈ [0, 5/8).

Proof (of Theorem 2) If a pixel in the middle column fires,
its signal must be non-zero on the high probability event

{

∀h ∈ TJ , |R(h)− ER(h)| ≤
√

2 ln |TJ |
α

}

. (30)

Consequently, its covering ratio is 1 with high probability.
Next, consider the case where 1 ≤ s∗ < ∞. The goal is

to show that, asymptotically, the curve ℓ̄s∗ enjoys a covering
ratio close to 1 − γ∗/ω with high probability. To this end,
we first lower bound the covering ratio in terms of edge re-
sponses and then prove that when n is large, this lower bound
approaches 1− γ∗/ω with high probability.

First, we define the following J + 1 reference curves

ℓ∗s = argmax
ρ(g,ℓs)=1

|ER(ℓs)|, s = 0, 1, . . . , J. (31)

Their existence is guaranteed by Assumption (20). Let Ls be
the number of columns in the scale s sub-strip. Eq. (7) implies

|ER(ℓ∗s)|σ
√

2ωLs ≥ (ω − γ∗)µΓ (g)Ls. (32)

By definition, any scale s candidate curve ℓs also satisfies

|ER(ℓs)|σ
√

2ωLs ≤ ωµΓ (g)ρ(g, ℓs)Ls (33)

Combining (32) and (33) gives the following deterministic
lower bound on the covering ratio

ρ(g, ℓs) ≥
ω − γ∗

ω

∣

∣

∣

∣

ER(ℓs)

ER(ℓ∗s)

∣

∣

∣

∣

, s = 0, . . . , J. (34)

Two straightforward triangle inequalities then lead to

ρ(g, ℓs) ≥
ω − γ∗

ω

|R(ℓs)| − |R(ℓs)− ER(ℓs)|
|R(ℓ∗s)|+ |R(ℓ∗s)− ER(ℓ∗s)|

As the relation |R(ℓ̄s)| ≥ |R(ℓ∗s)| always holds, we obtain

ρ(g, ℓ̄s) ≥
ω − γ∗

ω

|R(ℓ̄s)| − |R(ℓ̄s)− ER(ℓ̄s)|
|R(ℓ̄s)|+ |R(ℓ∗s)− ER(ℓ∗s)|

which then implies

ρ(g, ℓ̄s) ≥
ω − γ∗

ω

(

1− v∗s + v̄s

|R(ℓ̄s)|

)

,

where v∗s := |R(ℓ∗s)− ER(ℓ∗s)| and v̄s := |R(ℓ̄s)− ER(ℓ̄s)|.
To get the desired result, it suffices to show that when n

is large, on a high probability event restricted to {s∗ < +∞},
both v∗s∗ and v̄s∗ are small compared to |R(ℓ̄s∗)|.

Though unknown, the reference curves ℓ∗s are determin-
istic. Hence, it follows from Lemma 4 that max0≤s≤J v∗s

is OP (
√
ln J) = OP (

√
ln lnn). Since v∗s∗ ≤ max0≤s≤J v∗s ,

v∗s∗ , it is asymptotically negligible compared to the detection

threshold τd = O(
√
lnn) with high probability. So is it to

|R(ℓ̄s∗)| which by definition is larger than τd.
In contrast, at each scale, the candidate curve with the

maximal absolute edge response is random. To control v̄s∗ ,
we show such candidate curves can only belong to a certain
set whose size we upper bound. Then Lemma 4 can be used.
To this end, we first prove that thanks to the offset ∆ in the
detection threshold, it is with high probability that a firing
candidate curve enjoys a minimal covering with the edge g.

Lemma 10 On a high probability event, any candidate curve
ℓ firing at scale s∗ ∈ {1, . . . , J}, namely |R(ℓ)| > τd, satisfies

ρ(g, ℓ) ≥ (ω − γ∗)2∆

2
√
3ω2τd

. (35)

The next theorem asserts that, at any fixed scale, the number
of candidate curves that satisfy (35) is at most O((lnn)3).

Theorem 3 Let g ∈ Rb,n. For any κ ∈ [0, 5/8), in a strip
of O(nκ) columns, there is a constant C independent of n
and κ such that

|{ℓ ∈ S(b, I,Mq,m, n) | ρ(g, ℓ) > ρ}| ≤ C

ρ6
.

This concludes the proof of Theorem 2.

Proof (of Lemma 10) Eqs. (32) and (33) not only yield a
lower bound on the covering ratio (34), they also bound the
maximal expected edge responses of two successive scales

|ER(ℓ∗s)| ≤
√
3ω|ER(ℓ∗s−1)|
(ω − γ∗)

, s = 1, . . . , J (36)

This holds, because by definition, Ls ≤ 3Ls−1, for all s ≥ 1,
with equality at s = 1.

Combining Eqs. (36) and (34) leads to

ρ(g, ℓs) ≥
ω − γ∗

ω

∣

∣

∣

∣

ER(ℓs)

ER(ℓ∗s)

∣

∣

∣

∣

≥ (ω − γ∗)2√
3ω2

∣

∣

∣

∣

∣

ER(ℓs)

ER(ℓ∗s−1)

∣

∣

∣

∣

∣

.

Next, applying the triangle inequality gives, ∀s ∈ {1, . . . , J}

ρ(g, ℓs) ≥
(ω − γ∗)2(|R(ℓs)| −maxℓ′∈TJ

|R(ℓ′)− ER(ℓ′)|)√
3ω2(|R(ℓ̄s−1)|+max0≤s≤J |R(ℓ∗s)− ER(ℓ∗s)|)

,

Let ℓ be any candidate curve firing at scale s∗ ∈ {1, . . . , J}.
Then |R(ℓ)| > τd, and all candidate curves up to scale s∗ − 1
failed to fire. Hence, maxs<s∗ |R(ℓ̄s)| ≤ τd, and

ρ(g, ℓ) ≥ (ω − γ∗)2(τd −maxℓ′∈TJ
|R(ℓ′)− ER(ℓ′)|)√

3ω2(τd +max0≤s≤J |R(ℓ∗s)− ER(ℓ∗s)|)
.

On the event (30) which according to Lemma 4 has probabil-
ity at least 1− α, we thus have

ρ(g, ℓ) ≥ (ω − γ∗)2∆

2
√
3ω2τd

.
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Proof (of Theorem 3) The proof of Lemma 3 effectively shows
that the sublinear runtime requires ak = 0 for k > 2 when
n → ∞. We thus assume r = 2 in the following. Let pq ∈
Sp(b, I,Mq, n) be such that ℓ = Im(pq) intersects the signal
tube of an edge g ∈ Rb,n at point x ∈ I, that is |ℓ(x)−g(x)| ≤
ω − 1. By Theorem 1, and the triangle inequality

|pq(x)− Ps
I,Mq

(g)(x)| ≤ |pq(x)− ℓ(x)|+ |ℓ(x)− g(x)|
+|g(x)− Ps

I,Mq
(g)(x)| ≤ W

where W := ω − 1 + E1(I) + E2(I,m). Let

A(pq) =
L
∑

k=1

1|Ps
I,Mq

(g)(xk)−pq(xk)|≤W

where L is the number of strip columns. Hence, we find

A(pq) ≥
L
∑

k=1

1|g(xk)−ℓ(xk)|≤ω−1 = ρ(g, ℓ)L.

To prove the theorem, it suffices to show that there is some
constant C independent of n and κ such that for any ρ > 0,

|{pq ∈ Sp(b, I,Mq, n), A(pq) > ρL}| ≤ C

ρ6
.

To this end, we study two separate cases ρL ≥ 6 and ρL < 6.
First assume ρL ≥ 6. Since dq := Ps

I,Mq
(g) − pq is a

quantized polynomial of degree at most 2, the set of integers
{xk ∈ I, |dq(xk)| ≤ W} can be divided into at most 2 groups
of contiguous integers on which dq is monotone. The largest
group must therefore have at least ⌈ρL/2⌉ elements. Let I′ ⊂
I denote the smallest interval containing these integers. Its
length satisfies

λ(I′) ≥ (ρL/2− 1)+
(i)

≥ ρL/3 > ρλ(I)/3 (37)

where inequality (i) holds thanks to the assumption ρL ≥ 6.
The polynomial dq is uniformly bounded by W over I′,

which implies a bound on its coefficients. It can be proved,
for instance, by Markov’s theorem (see, e.g. [1]).

Theorem 4 (Markov) Consider the universal constants

Cr,k =

{

∏k−1
j=0

r2−j2

2j+1
, k > 0

1, k = 0

Then for any polynomial p(x) of degree r and any k ≤ r

sup
x∈[−1,1]

|p(k)(x)| ≤ Cr,k sup
x∈[−1,1]

|p(x)|.

The idea is thus to turn the bounds on the coefficients into
a bound on the number of such polynomials. Specifically, let
I′ = [y0, y1] and apply Markov’s theorem to the polynomial

d̄q(x) = dq

(

y1 − y0

2
x+

y1 + y0

2

)

which is uniformly bounded on the interval [−1, 1] by W . We
obtain for k = 1, 2

sup
x∈I′

|d(k)
q (x)| ≤ C2,k

2kW

λ(I′)k
< C2,k

6kW

ρkλ(I)k
, (38)

where the last inequality follows from Eq. (37). Let c denote
the interval I’s midpoint and y∗ = argminy∈I′ |y − c|. It is
clear |y∗ − c| < λ(I)/2. Hence for all k = 0, 1, 2

|d(k)
q (c)| ≤ |d(k)

q (c)− d(k)
q (y∗)|+ |d(k)

q (y∗)|

≤ 2k

λ(I)k

2
∑

i=k

|d(i)q (y∗)|λ(I)i
(i− k)!2i

. (39)

Substituting the estimates of Eq. (38) into Eq. (39), we obtain

|d(k)
q (c)| ≤ 2k

λ(I)k

2
∑

i=k

|d(i)q (y∗)|λ(I)i
(i− k)!2i

<
2kW

λ(I)k

2
∑

i=k

C2,i3i

(i− k)!ρi
.

Hence if we write dq as

dq(x) =

2
∑

k=0

āk

Mq

(

x− c

λ(I)/2

)k

,

its quantized coefficients (āk)0≤k≤2 can be bounded

|āk| =
Mqλ(I)k

k!2k
|d(k)

q (c)| ≤ MqW

ρ2k!

2
∑

i=k

C2,i3i

(i− k)!
.

Hence when ρL ≥ 6, the number of polynomials can be

upper bounded by C
(MqW )3

ρ6 for a universal constant C.

Turn to the case ρL < 6. If a candidate curve ℓ satisfies
|ℓ(x)− g(x)| ≤ ω − 1 at some x ∈ I, we deduce

|ℓ(x)− g(c)| ≤ ω − 1 +
b1λ(I)

2
.

As a result, we are interested in bounding the size of

B =

{

pq

∣

∣

∣ min
x∈I

|Im(pq)(x)− g(c)| ≤ ω − 1 + b1λ(I)

2

}

.

To this end, writing a generic element in the set B as

pq(x) =
2
∑

k=0

ak

Mq

(

x− c

λ(I)/2

)k

,

we aim to bound a0. Applying the triangle inequality gives

|pq(c)− g(c)|
≤ min

x∈I

(

|pq(c)− pq(x)|+ |pq(x)− ℓ(x)|+ |ℓ(x)− g(c)|
)

≤ 1

Mq

2
∑

k=1

|ak|+ E2(I,m) + ω − 1 +
b1λ(I)

2

≤ b1λ(I)(1 +O(1))

thanks to Eq. (12). Multiplying both sides of the inequality
by Mq, we find

|a0 − g(c)Mq| ≤ Mqb1λ(I)(1 +O(1))

and

|B| ≤ Mqb1λ(I) (1 +O(1))

2
∏

k=1

(

bkλ(I)kMq

(2n)k−1
+ 2

)

.

As the condition ρL < 6 implies λ(I) < 6
ρ
, we conclude |B| ≤

C′

ρ3 for some constant C′ independent of n and κ.
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Proof (of Lemma 5) As soon as the reference curve ℓ∗J defined
in Eq. (31) satisfies

|ER(ℓ∗J )| ≥ τd + cβ (40)

where cβ is the standard normal distribution’s β-quantile, the
probability of the event {s∗ = +∞} of all candidate curves
not firing is less than β. A sufficient condition for Eq. (40) to
hold can be obtained using Eq. (7)

|ER(ℓ∗J )| ≥
µΓ (g)(ω − γ∗)

√
L

σ
√
2ω

≥ τd + cβ

with L = 2J + 1 the number of columns of the full strip.
Rearranging this inequality, we find

µΓ (g)

σ
≥

√
2ω(τd + cβ)

(ω − γ∗)
√
L

.

The strip width L = O(nκ) and the detection threshold τd =

O(
√
lnn) thus imply the asymptotic minimal detectable edge

SNR = O(n−κ/2
√
lnn).

Proof (of Lemma 7) It follows from Eq. (24) that for all k =
1, . . . , r

∣

∣

∣

∣

∣

a
(i)
k k!

Mqλ(I′i)
k
− g(k) (x′

i)

∣

∣

∣

∣

∣

≤ k!

2Mqλ(I′i)
k
, i = 0, 1.

An application of the triangle inequality leads to
∣

∣

∣

∣

a
(0)
k k!

Mqλ(I′
0
)k

− a
(1)
k k!

Mqλ(I′
1
)k

∣

∣

∣

∣

≤ k!
2Mqλ(I′

0
)k

+ k!
2Mqλ(I′

1
)k

+
∣

∣

∣g(k) (x′
1)− g(k) (x′

0)
∣

∣

∣ .

Since
∣

∣g(k) (x′
1)− g(k) (x′

0)
∣

∣ ≤ min
(

2‖g(k)‖∞, λ(I′0)‖g(k+1)‖∞
)

,
Eq.(28) of the lemma readily follows.

Regarding the constant term a
(1)
0 , thanks to the uniform

approximation error bound (16), it satisfies
∣

∣

∣

∣

a
(1)
0

Mq
− p(0)q (x′

1)

∣

∣

∣

∣

≤
∣

∣

∣

∣

a
(1)
0

Mq
− g(x′

1)

∣

∣

∣

∣

+
∣

∣

∣g(x′
1)− p(0)q (x′

1)
∣

∣

∣

≤ r+2
2Mq

+
br+1

nr λ(I′0)
r+1.

Proof (of Eq. (7)) We start by showing that the condition
supx∈[x1,xL] |h(x)− g(x)| ≤ γ implies that

max
1≤k≤L

|⌊h(xk)⌋ − ⌊g(xk)⌋| ≤ γ. (41)

To this end, note that the following holds for all (z1, z2) ∈ R
2

|⌊z1⌋ − ⌊z2⌋|
(i)

≤ |z1 − z2|+ |(z2 − ⌊z2⌋)− (z1 − ⌊z1⌋)|
(ii)
< |z1 − z2|+ 1.

Inequality (i) follows from the triangle inequality. Since both
z2 − ⌊z2⌋ and z1 − ⌊z1⌋ take values in [0, 1), their difference
is strictly smaller than 1 in absolute value, which explains
inequality (ii). Consequently, we find

max
1≤k≤L

|⌊h(xk)⌋ − ⌊g(xk)⌋| < 1 + max
1≤k≤L

|h(xk)− g(xk)|

≤ 1 + sup
x∈[x1,xL]

|h(x)− g(x)|

≤ 1 + γ.

Since max1≤k≤L |⌊h(xk)⌋ − ⌊g(xk)⌋| is an integer, its being
strictly smaller than γ + 1 can only imply Eq. (41).

To prove Eq. (7), we use Eq. (6) which gives

ER(h) =
1

σ
√
L

L
∑

k=1

E [R(xk, ⌊h(xk)⌋)] . (42)

If there is only one edge, all the summands in (42) have the
same sign. Hence, we deduce from Eq. (5) and (41) that

|ER(h)| = 1

σ
√
L

L
∑

k=1

|E [R(xk, ⌊h(xk)⌋)] | ≥
µΓ (g)

√
L(ω − γ)+

σ
√
2ω

.
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