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A note on the size of denoising neural networks
Yi-Qing Wang, and Jean-Michel Morel

Abstract—Patch based denoising algorithms seek to approx-
imate the conditional expectation of clean patches given their
related noisy observations. In this note, we give a probabilis-
tic account of how various algorithms approach this problem
and in particular, we argue that small neural networks can
denoise small-scale texture patterns almost as well as their large
counterparts. The analysis further indicates that self-similarity
and neural networks are complementary paradigms for patch
denoising, which we illustrate with an algorithm that effectively
complements BM3D with small neural networks, thereby outper-
forming BM3D with minor additional cost.

Index Terms—multilayer neural network, conditional expecta-
tion, image denoising, small-scale texture denoising

I. INTRODUCTION

IMAGE denoising aims to recover an image from its noisy
observation affected by Gaussian noise of a known stan-

dard deviation. A typical image denoising algorithm involves
identifying and modelling natural image regularities, whether
they lie in the spatial or transform domains. Historically,
spatial domain methods such as total variation [1], anisotropic
diffusion [2] and bilateral filter [3] all grew out of a desire
to preserve image continuity, edges in particular. On the other
hand, transform domain methods were developed on the belief
that natural images can be sparsely represented with certain
linear transforms. Thanks to coefficient shrinkage, they also
led to effective algorithms [4]–[7].

Since the appearance of non-local means [8], development
in this field has blurred the distinction between these two
approaches. BM3D [9], for instance, uses spatial block match-
ing to obtain similar patches, which are then jointly filtered
in a fixed basis with coefficient shrinkage. In addition, how
best to construct a basis has also been investigated, which
becomes an umbrella subject known as dictionary learning and
ultimately leads the research community to look beyond the
noisy image and seek data driven priors. Various techniques
including Gaussian mixture [10], [11] as well as unsupervised
and supervised K-SVD [12]–[14] have been successfully em-
ployed.

Increasingly powerful and accessible computing facilities
also make another line of research possible. Rather than try
to summarize the analytically intractable patch space with
dictionaries, one can now draw extensive samples from it
using external image databases, which produced impressive
results [15], [16]. Moreover, with training cost no longer as
prohibitive as it once was, researchers have also started to
harness the potential of neural networks [17]. Convolutional
neural networks [18], stacked sparse auto-encoders [19] and
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plain multilayer neural networks [20] all have had success at
image denoising. Several areas for improvements have been
suggested as well, ranging from activation function [21], latent
representation [22], to training schema and extension to other
noise levels and types [23], [24].

A. Patch denoising and its probabilistic interpretation

Patch denoising, which lies at the heart of most denoising
algorithms, is our focus in what follows. It is concerned with
estimating a noise-free patch X from a noisy observation Ỹ

Ỹ = Y +N

where Y is also noise-free and N zero-mean Gaussian noise
with a known standard deviation σ. Y is usually related to
X although we do not make any assumption on its nature
until later. The ideal filter in the sense of mean squared error
(MSE) is thus the conditional expectation EP[X|Ỹ ] because
of the equality

EP[X|Ỹ ] = argmin
f

EP‖f(Ỹ )−X‖22, P a.e.

where the probability P is the triplet (X,Y, Ỹ )’s joint distri-
bution and f an estimator of X from Ỹ .

When X and Ỹ form a Gaussian family, this conditional
expectation is the classic Wiener filter [25]. More generally,
a version of this P almost surely defined function of Ỹ can
be estimated with weakly correlated samples (xi, yi)i≥1 of
(X,Y ) thanks to the equality

EP[X|Ỹ = ỹ] = lim
n→∞

∑n
i=1 p(ỹ|yi)xi∑n
i=1 p(ỹ|yi)

, P a.e.

with

p(ỹ|yi) ∝ exp(−‖ỹ − yi‖
2
2

2σ2
).

This point-wise estimator was used as an upper bound of
the optimal patch denoising MSE [15]. Despite its theoretical
appeal, this estimator suffers from the curse of dimensionality
of a generic Monte-Carlo simulation for its inability of per-
forming importance sampling, that is, prioritizing the samples
whose y component is close to ỹ. In addition, given the huge
variety of natural patches, the mere existence of a single noise-
free candidate for each noisy patch requires a data storage
capacity too demanding for practical use.

An alternative is to make direct use of noisy observations.
Assuming that X and Y are two disjoint sets of pixels, we
may use

EP[X|Ỹ = ỹ] = EP[X̃|Ỹ = ỹ] ≈
∑n
i=1 x̃iW(‖ỹ − ỹi‖2)∑n
i=1W(‖ỹ − ỹi‖2)
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with the choice of weight function W(·) reflecting our belief
in the conditional expectation’s smoothness. The proof of
this estimator’s asymptotic consistency is generally known
as Stone’s theorem [26]. Owing to self-similarity in natural
images, this approximation scheme turns out to be very
effective and was popularized by non-local means [8], leading
eventually to BM3D [9].

Nonetheless these nonparametric estimators are constrained
by the availability of data. A potential remedy is a parametric
approach. However, unlike the Wiener filter which results
from a parametric data modelling, we can look for a para-
metric approximation of the conditional expectation, which is
possible with a large and well structured class of functions
parameterized by a vector-valued θ:

argmin
θ

EP‖fθ(Ỹ )−X‖22 = argmin
θ

EP‖fθ(Ỹ )− E[X|Ỹ ]‖22.

This is where multilayer feedforward neural networks come
into play. Their fully-connected structure consists of a succes-
sion of non-linear hidden layers followed by a linear decoder

fθ(·) = s ◦ hn ◦ · · · ◦ h1(·), n ≥ 1

with

∀1 ≤ l ≤ n, hl(z) = tanh(Wlz + bl)

and

s(z) =Wn+1z + bn+1

where the activation function tanh(·) is applied element-
wise and the parameter vector θ comprises all the connection
weights and biases (Wl, bl). Known to be universal approx-
imators [27], [28], they are tuned with stochastic gradient
descent, also called backpropagation [29], [30] due to their
particular function structure. In spite of their non-convex train-
ing objective, neural networks enjoy widespread use thanks
to their superior practical performances [17]. Several recently
published image denoising neural networks [20], for instance,
have outperformed BM3D [9], long held as the state-of-the-
art. Unfortunately, with four hidden layers having over 2000
units each, these neural networks effectively require tens of
millions of multiplication operations per pixel when denoising
a grayscale image.

Since it is recognized [20] that neural networks do not
strictly dominate BM3D, it was proposed [31] to train one
more neural network of comparable size which takes in the
denoised patches from both BM3D and neural networks in
addition to the original noisy patch and outputs a combined
result. This method improves both algorithms because, again
in view of the conditional expectation, we have for any random
triplet (X, Ỹ , H̃)

EP‖X − EP[X|Ỹ ]‖22 − EP‖X − EP[X|Ỹ , H̃]‖22
=EP‖EP[X|Ỹ , H̃]− EP[X|Ỹ ]‖22 ≥ 0,

that is, more information helps lower the theoretical MSE
bound. However, the proposed approach doubles the already
heavy computational load.

B. Our contribution

We investigate whether it is possible to scale down the
neural networks while preserving their performance. It is
argued that as noise increases, small neural networks are a
better alternative to self-similarity for small-scale texture pat-
tern denoising and that large neural networks and their heavy
computational cost may be unnecessary for this specific task.
Thanks to a conditional expectation decomposition, we show
that self-similarity and neural networks are complementary
approaches to patch denoising and propose an algorithm to
combine BM3D and small neural networks geared towards
granular texture denoising, which achieves better performance
than either individually at minor additional cost.

The paper is organized as follows: Section II argues and
presents numerical evidence that large neural networks are
not necessary for denoising small-scale texture patterns and
that neural networks and self-similarity are complementary
patch denoising paradigms. Section III presents a principled
framework which effectively complements BM3D with small
neural networks. Section IV concludes.

II. SMALL-SCALE TEXTURE PATTERN DENOISING

Patterns in natural images tend to repeat themselves. Even
the objects composing a random texture are of regular shape
when viewed at a close distance relative to their dimensions.
Non-local means [8] and BM3D [9] use this prior to find
similar neighboring patches to denoise. Their ability to adapt
patch size and shape to image content is also crucial [32]
because self-similarity is present at different scales of obser-
vation. However, there is a limit to which this strategy can be
meaningfully pursued because the smallest unit of observation
in digital images is a pixel. As a consequence, self-similarity
may not be reliably exploited on small-scale texture patterns
affected by strong noise.

Neural networks thus offer a valuable solution. Moreover, if
the pixel interactions in certain texture areas are of short-range
nature [33], it may even be possible to replace large neural
networks by smaller ones. For an experimental investigation,
we set up three identical neural networks acting on a 7-by-7
noisy input to estimate its central 3-by-3 block. Comprising
three hidden layers with 147 units each, their architecture
can be summarized as 49-147-147-147-9. They were trained
108 rounds on the grayscale PASCAL VOC 2012 dataset
under Gaussian noise standard deviation set to 10, 25, 35
respectively in order to match the published ones [20], whose
architectures are 441-2047-2047-2047-2047-81, 1521-3072-
3072-2559-2047-289 and 1521-3071-3071-2559-2047-289.

Two images were selected for testing. The first, of di-
mension 746 × 264, was cropped from a standard Kodak
PhotoCD benchmark image rendered to grayscale with mat-
lab’s rgb2gray function. It was chosen because of its rich
small-scale texture content. The second 1280-by-1280 image
has artificially generated structured patterns. Neither image
was used in the training or validation set. We compared the
standard BM3D, BM3D4 which is BM3D with reduced patch
size (4 instead of 8) at the first round of block matching,
BM3D-SAPCA [32] and small and large neural networks.
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Fig. 1: The two test images

TABLE I: Algorithm comparison in PSNR

σ = 10 BM3D BM3D4 BM3D-SAPCA small large
structure 45.79 42.08 46.84 40.45 43.78

texture 29.95 30.00 30.20 30.09 30.22

σ = 25 BM3D BM3D4 BM3D-SAPCA small large
structure 39.10 34.65 39.90 35.11 40.24
texture 24.66 24.89 24.90 24.92 25.11

σ = 35 BM3D BM3D4 BM3D-SAPCA small large
structure 36.67 31.94 37.35 32.80 38.42
texture 23.17 23.30 23.28 23.37 23.59

Table I indicates that small neural networks denoised small-
scale texture patterns almost as well as their large counterparts
(also see Figure 2). On the other hand, BM3D underperformed
both neural networks where self-similarity was lacking on
its own fixed scale. Thanks to a better matched patch size,
BM3D4 did better albeit at the price of much poorer showing
on highly structured and large-scale patterns, a problem shared
by small neural networks versus the large ones. BM3D’s 39-
by-39 search window, vis-à-vis the large neural networks’
input size (21-by-21 for σ=10 and 39-by-39 for the rest) also
shows that it is more effective under lower noise. With addi-
tional adaptivity from flexible patch size and shape, BM3D-
SAPCA [32] does much better, although it also loses its edge
as noise grows because it becomes increasingly difficult to
determine similarity, especially on small-scale texture patterns.
Computationally speaking, on a grayscale image, these small
neural networks require roughly 5× 104 operations per pixel,
which is more than 500 times cheaper than their large coun-
terparts and makes them on a par with BM3D because BM3D
needs 4× 104 operations per pixel if all of its transforms are
implemented with a time complexity equal to N log2N [9].

III. COMPLEMENTING SELF-SIMILARITY WITH SMALL
NEURAL NETWORKS

Loosely speaking, a natural image consists of texture and
structure, whose definition may depend on the scale of obser-
vation. Formally, we thus consider P the distribution which
governs the patterns on a fixed patch size. Let it be the
sum αT + (1 − α)S for some α ∈ (0, 1) and T, S two
probabilities responsible for texture and structure generation.
The next theorem helps understand the behaviour of an ideal
filter.

Theorem. Let P,T,S be three probabilities defined on a
common measurable space satisfying P = αT + (1 − α)S
for some α ∈ (0, 1). Let U, V be two random vectors with
EP‖U‖1 < +∞ defined on the same space. Then we have P
a.e.

EP[U |V ] = αEP[
dT
dP
|V ]ET[U |V ] + (1− α)EP[

dS
dP
|V ]ES[U |V ],

where dT
dP and dS

dP are the Radon-Nikodym derivatives of T and
S with respect to P.

Proof : by the definition of a conditional expectation, we
have for any bounded Borel function φ(·)

EP[EP[U |V ]φ(V )]

=EP[Uφ(V )]

=αET[Uφ(V )] + (1− α)ES[Uφ(V )]

=αET[ET[U |V ]φ(V )] + (1− α)ES[ES[U |V ]φ(V )]

=αEP[
dT
dP

ET[U |V ]φ(V )] + (1− α)EP[
dS
dP

ES[U |V ]φ(V )] (1)

=EP[
(
αEP[

dT
dP
|V ]ET[U |V ] + (1− α)EP[

dS
dP
|V ]ES[U |V ]

)
φ(V )].

The equation (1) holds because both T and S are absolutely
continuous with respect to P by construction. As a result, if
we define D(V ) to be the first coordinate of the random vector

αEP[
dT
dP
|V ]ET[U |V ] + (1− α)EP[

dS
dP
|V ]ES[U |V ]− EP[U |V ],

then for all n ∈ N
EP[D(V )1D(V )<−n−1 ] = EP[D(V )1D(V )>n−1 ] = 0

because both 1D(·)>n−1 and 1D(·)<−n−1 are bounded. So we
deduce

n−1P(|D(V )| > n−1)

≤EP[|D(V )|1|D(V )|>n−1 ]

=EP[D(V )1D(V )>n−1 ]− EP[D(V )1D(V )<−n−1 ] = 0

which implies

P(|D(V )| > 0) = lim
n→∞

P(|D(V )| > n−1) = 0⇔ P(D(V ) = 0) = 1.

The same reasoning applies to the random vector’s other
coordinates. Hence the probability for it to vanish is 1. �

The classic likelihood ratios [26] found in the conditional
expectation decomposition satisfy

αEP[
dT
dP
|V ] + (1− α)EP[

dS
dP
|V ] = EP[

dP
dP
|V ] = 1.

Therefore a good filter mechanically involves pattern clas-
sification and estimation. Intricately built, a well trained large
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(a) (b) PSNR=20.17 (c) PSNR=25.99

(d) PSNR=26.09 (e) PSNR=26.11 (f) PSNR=26.34

Fig. 2: (a) original (b) noisy (c) BM3D (d) BM3D-SAPCA (e) small NN (f) large NN

neural network has filters dedicated to structure and texture as
well as a classification device entangled in a single black box.
In light of the previous section, it is tempting to replace them
by less costly alternatives, namely, BM3D and small neural
networks. As to the classification, we may resort to a zero-
one rule so that unlike the weighting scheme in the conditional
expectation decomposition, a noisy patch is processed by one
and only one filter.

This leads to our algorithm SSaNN, for self-similarity and
neural network, which relies on a texture detector to switch
between BM3D and small neural networks. Given a noisy
image and its noise level, it first produces two denoised
versions by the small neural network trained under the same
noise condition and BM3D. Then it extends the noisy image
in order to form a one-to-one mapping between the 7-by-7
patches in the extended image and the pixels in the original
noisy image by associating a patch with its central pixel. Next,
depending on the number of obtained `2-similar neighbors,
the patches are classified as either texture or structure, a label
then transfered to their associated pixel. Finally, the algorithm
combines the two denoised image versions accordingly. For
a faster execution, one could classify the pixels first and
then choose to denoise them with the neural network or
BM3D. Though here we use BM3D as a leading example
of self-similarity based algorithms, there is no difficulty of
substituting it by another more advanced variant. Their results
are reported in Table II with the parameters of Algorithm 1
set to h=7, κ=12, β=1.2 (1.7 for σ=10) and n=3. Our test set
(Figure 3) has the six large natural images acquired under good
lighting conditions and downsampled specifically to ensure
their quality and pattern diversity.

In Table II, SSaNN1 (resp. SSaNN2) denotes the combina-
tion of BM3D (resp. BM3D-SAPCA) with the small neural
networks. It demonstrates that SSaNN1 effectively represents
an improvement over both BM3D and small neural networks
operating individually on images with small-scale texture
content. Coherent with Table I, BM3D-SAPCA, with less scale
mismatch and a higher complexity, did better alone under
lower noise.

Algorithm 1 Texture detector
1: Input: a noisy image and a reference patch.
2: Parameter: Gaussian noise standard deviation σ, patch size h,

search window size κ, similarity threshold β, required number of
similar neighbors n.

3: Compute the `2-norm of the difference between the reference
patch and all its surrounding patches in the search window and
declare a neighboring patch similar if the distance is smaller than√

2βσh.
4: Label the reference patch as structure if more than n similar

patches have been found.

Algorithm 2 SSaNN

1: Input: noisy image Ĩ .
2: Output: denoised image.
3: Parameter: Gaussian noise standard deviation σ.
4: Denoise Ĩ with BM3D and the neural network to get IB and IN .
5: Extend Ĩ to Ī so that Ī’s 7-by-7 patches form one-to-one mapping

with Ĩ’s pixels.
6: Use Algorithm 1 to classify Ĩ’s patches (hence Ī’s pixels) into

either structure or texture. Form a matrix TS of the same size
as Ī with TS(x, y) set to 1 if Ī(x, y) is labeled structure and 0

otherwise.
7: Return IN ◦(1−TS)+IB ◦TS where ◦ denotes the element-wise

product.

IV. DISCUSSION AND CONCLUSION

Self-similarity is one of nature’s fundamental properties,
whose usefulness in image processing however is constrained
by the finite resolution of digital images and the presence of
noise. As a result, it is crucial for a self-similarity guided
denoising algorithm to adapt the patch size to the scale of
image content and to the noise level. If a patch is too big with
respect to its context, similar neighbors might not exist. On
the other hand, if a patch is too small relative to the noise
level, it is hard to correctly identify similar patches among its
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(a) (b) (c) (d)

(e) (f)

Fig. 3: Test images (a) computer (b) dice (c) flower (d) girl (e) traffic (f) valldemossa. All images are of dimension 704× 469
except for valldemossa (769× 338).

TABLE II: Algorithm comparison in PSNR

σ = 10 small BM3D SSaNN1 BM3D-SAPCA SSaNN2 large
computer 34.21 34.76 34.84 35.28 35.15 34.56

dice 39.91 43.06 43.06 43.44 43.44 42.58

flower 38.07 39.10 39.16 39.22 39.18 39.27
girl 38.78 40.81 40.81 40.95 40.95 40.47

traffic 33.06 33.10 33.22 33.43 33.46 33.30

valldemossa 31.80 31.73 31.87 31.99 31.97 31.90

σ = 25 small BM3D SSaNN1 BM3D-SAPCA SSaNN2 large
computer 29.16 29.91 29.94 30.28 30.23 29.85

dice 34.49 38.47 38.47 38.82 38.82 39.03
flower 33.15 33.89 33.96 34.03 34.03 34.42
girl 34.01 36.91 36.91 36.93 36.93 37.35
traffic 27.99 28.18 28.32 28.38 28.47 28.53
valldemossa 26.39 26.35 26.52 26.48 26.62 26.66

σ = 35 small BM3D SSaNN1 BM3D-SAPCA SSaNN2 large
computer 27.41 28.24 28.24 28.54 28.53 28.24

dice 32.23 36.54 36.56 36.60 36.60 37.53
flower 31.24 32.01 32.03 32.21 32.24 32.57
girl 32.02 35.24 35.22 35.26 35.26 36.07
traffic 26.36 26.66 26.72 26.75 26.80 27.02
valldemossa 24.72 24.76 24.88 24.84 24.99 25.06

neighboring candidates via block matching. Restoring small-
scale texture patterns under relatively strong noise is therefore
a challenge.

Neural networks are a possible solution because they are
made scale and noise conscious by explicitly seeking to
approximate a conditional expectation in their training. How-
ever, for them to correctly handle large-scale and typically
highly structured patterns on their own, they need an even
larger observation window, which unfortunately entails high
computational cost as a result of their broad hidden layers
and deep architectures.

To scale down large neural networks thus translates into
making use of the complementary nature of self-similarity

and neural networks. Concretely, by having a self-similarity
based algorithm work on larger-scale patterns and small neural
networks focus on smaller-scale patterns, one may hope to get
the best of both worlds without having to worry about the tech-
nical detail of patch size. Still, contrary to the soft weighting
scheme of the ideal conditional expectation decomposition,
a filter built upon a hard scale classification is more prone
to errors because the accuracy of SSaNN’s texture detector
decreases with noise.

To conclude, in this work, we highlighted the conditional
expectation because it is not only key to understanding most
patch based denoising algorithms, but also inherently easier to
analyze and approximate than its underlying law. In addition,
we showed through experiments that the advantage of small
neural networks is two-fold: they withstand relatively stronger
noise better than BM3D and its variants on small-scale texture
patterns and the notion of scale is transparent because of their
fixed input size. Moreover, following the spirit of a conditional
expectation decomposition, we presented a novel light-weight
algorithm to effectively combine small neural networks with
BM3D.
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