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ABSTRACT

The recent revival of interest in artificial neural networks has

been fueled by their successful applications in various image

processing and computer vision tasks. In this work, we make

use of the rotational invariance of the natural image patch dis-

tribution and propose a 4 × 4 patch based multilayer neural

network for image demosaicking. We show that it does sur-

prisingly well compared to state-of-the-art approaches requir-

ing much larger neighborhoods. An online demo can be found

at http://dev.ipol.im/˜yiqing/ipol_demo/neuaick/.

Index Terms— image demosaicking, multilayer neural

network, distributional invariance

1. INTRODUCTION

Most digital cameras place a Bayer [1] color filter array (CFA)

in front of the sensor to record just one color (R, G or B) at

each pixel site. This results in a mosaiced image. The process

of restoring the missing color information in such an image

through cross-channel interpolation is termed demosaicking.

A huge body of work has been done in this field [2] including

two neural network inspired approaches [3, 4]. However, re-

cent successful applications of multilayer neural networks in

image processing [5] warrant a revisit of the subject.

A patch based demosaicking algorithm should approxi-

mate the expectation of the missing pixels conditional on the

visible ones under some patch distribution. For an illustration,

we start with pixels, or 1×1 patches, for which conditional ex-

pectations are simple to evaluate. For instance, to estimate the

green channel given its red counterpart, it suffices to sample

a large number of color pixels having the same red intensity

and take the average of their green intensities (see Fig.1). Un-

surprisingly, despite their accuracy, the obtained conditional

expectations do not work well even when applied to an image

taken from the same image set (see Fig.2). Because of the

quasi-linear relationship in all three cases, here demosaicking

tends to make a gray-looking image out of a mosaiced one. In

addition, since the local geometry is not taken into account,

the so-called zipper effect is pronounced.

Therefore, the natural extension is to enlarge patches. Its

benefit is obvious from the previous discussion, even though
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Fig. 1. In the McMaster dataset [6]: conditional expectations

of the other two channels given the (a) red (c) green (e) blue

channel and their respective un-normalized prior distributions

(b) red (d) green (f) blue.

computing conditional expectations are no longer as easy, be-

cause the same approach quickly becomes intractable due to

the curse of dimensionality. Fortunately, studies have shown

that neural networks are universal approximators [7] and that

deep networks tend to represent signals more efficiently [8].

Owing to the problem’s non-convex nature in general, it was

not clear as to how best to tap into this potential from a numer-

ical standpoint. However, since 2006, major advances have

been made in this direction [8]. Key to training a deep, or mul-

tilayer, neural network seems to be an autoencoder-enabled

unsupervised learning process.



(b) original (c) demosaiced

Fig. 2. Demosaicking a McMaster subimage with pixel-wise

conditional expectations computed from the same dataset.

2. TRAINING A DEEP NEURAL NETWORK

First, let us introduce the concept of autoencoder. An autoen-

coder is a neural network whose fan-in x and fan-out x̂ are

vectors of the same dimension, related by a non-linear hidden

layer of potentially different size

x̂ = V a+ h

a = tanh(Wx+ b) (1)

or

x̂ = tanh(V a+ h)

a = tanh(Wx+ b) (2)

where tanh(·) is understood to be applied element-wise. The

filtering defined by (W, b) followed by the hidden layer trans-

forms the fan-in x to the activation a, which is supposed to

code x in such a way as to make the reconstruction x̂ close

to x. Therefore, building an autoencoder can be seen as ex-

tracting the most statistically relevant features from the fan-

in. Suppose that we have n input signals (xj)1≤j≤n ∈ R
d×n

which produce n activations a := (aj)1≤j≤n ∈ R
md×n, the

autoencoder’s parameters are determined through minimizing

the following objective

1

nd
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2
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α

md2
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(3)

with α, β, ρ three prefixed hyper-parameters. The last penalty,

intended to induce an over-complete dictionary for sparse rep-

resentation, is a function of average activation

sp(a1, · · · , an, n, d, ρ) =
1

md

md∑

k=1

KL
(
ρ
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n
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where

1. m is a redundancy control. Together with the activation

level ρ ∈ (0, 1), it suggests that ideally, ρmd hidden

nodes per patch are fully activated on average.

2. KL(·||·) is the standard Kullback-Leibler divergence

between two Bernoulli probabilities. Regardless of ρ,

this divergence strongly penalises average activation

near 0 and 1, either because the associated feature is ir-

relevant or because it has rather low information value.

Yet it is still possible for a spurious feature to reach the

prescribed activation level if its norm is big enough,

hence the regularization term ‖W‖22.

3. The term ‖V ‖22 is there to prevent over-fitting. Another

concern is to prevent an autoencoder from learning an

identity, which may come with a small W and a large

V to exploit the quasi-linearity of tanh(·) around zero.

Thus the prior on V helps. See [9] for another solution.

4. The features recorded in W ought to stay away from 0
thanks to the sparsity constraint. If there are not enough

distinct features to fill all the hidden nodes, almost

identical features may result, which indicates a higher

than necessary m or poorly chosen hyper-parameters.

Turn now to our deep neural network. Given a κ × κ

mosaiced patch v (hence d = κ2), represented as a Rκ2

-valued

column vector, our network with two hidden and one linear

output layers will make an educated guess û as to what the

missing pixels u ∈ R
2κ2

should look like according to

û = W3[v
t, tanh(W2 tanh(W1v + b1) + b2)

t]t + b3.

Note that this architecture is meant to let the neural network

focus on the non-linear part of the color interpolation.

To determine (Wl, bl)1≤l≤3, a combination of supervised

and unsupervised learning, as advocated in [8], was used. We

first drew n random patches from some high quality color im-

ages. To each of these patches, the RGGB Bayer CFA was

applied to separate the visible pixels v from the invisible ones

u. An autoencoder was trained on v and the resultant filter

(W, b) henceforth became (W1, b1). The activations from the

first hidden layer were then computed, on which another au-

toencoder was trained to set up (W2, b2). Finally, the output

linear layer was initialized by a linear regression to fit the

teaching signals u. All the involved objectives (3) were opti-

mized using L-BFGS [10]. Note that before starting training,

it helps to zero-phase whiten v and u (see Algorithm 1).

Algorithm 1 Zero-phase whitening

1: Input: n vectors pj ∈ R
d.

2: Output: the whitening operator W .

3: Parameter: smoothing factor σZ .

4: Center the inputs p̃j = (pj − p̄)/255 with p̄ = 1

n

∑n
j=1

pj .

5: Run the principal component analysis (PCA) on (p̃j)1≤j≤n to get

their eigenvectors and eigenvalues (φi, λi)1≤i≤d.

6: W(p) = 255−1
∑d

i=1

√

1

λi+σz

〈

φi, p − p̃
〉

φi with
〈

·, ·
〉

a stan-

dard scalar product.



Once fully configured, the deep network was fine-tuned

with the backpropagation algorithm [11] on the same training

data for several more rounds. Fresh data was then drawn in

to run the stochastic gradient in the hope of further improv-

ing the network. In these last two stages, the network’s gen-

eralization error was assessed on a distinct set of validation

examples. Since we could not know in advance the hyper-

parameters most conducive to good learning, an exhaustive

exploration in the parameter space was carried out.

Trained to restore color removed by the RGGB CFA rep-

resented in Fig.3(a) for 2×2 patches, a network should be able

to handle those masked by any of the other three CFAs as well

because the patch distribution is rotation-invariant. The same

argument remains true when extended to 2k×2k patches with

k ≥ 1. In practice, it means that each missing color pixel

can be estimated multiple times, thereby enhancing the algo-

rithm’s overall performance.

(a) (b) (c) (d)

Fig. 3. Four basic blocks of the Bayer pattern

3. EXPERIMENTS

In our experiments, the patches were 4×4 and whitened using

Algorithm 1 with σZ = 0.1 for inputs and σZ = 0 for outputs.

The first hidden layer containing 80 nodes was trained 400
rounds using an autoencoder of type (1) with α = 0.4, β = 5,

ρ = 0.1 on 105 examples. The second hidden layer also has

80 nodes, and was trained 400 rounds using an autoencoder

of type (2) with hyper-parameters α = 0.4, β = 0.1, ρ = 0.05.

The final layer followed from

(W3, b3) = argmin
(W,b)

‖ũ−Wv̄ − b‖22 + λ‖W‖22

where v̄ is the concatenation of the whitened input ṽ and their

activations from the network’s second hidden layer. ũ is the

whitened output. The decay parameter λ was set to 0.005.

Fig. 4. Evolution of the validation RMSEs during the stochas-

tic gradient descent. Though noisy, this RMSE path clearly

demonstrates the value of stochastic gradient descent.

When tracking the neural network’s performance (Fig.4)

on a validation dataset of 104 patches, we ran 4× 106 rounds

of stochastic gradient descent with batch size 100 at a learning

rate 0.001 to further drive down the objective

‖ũ− f(ṽ, θ)‖22 + λ‖W3‖
2
2,

where f(·, θ) is the network defined by its parameter set θ.

(a) (b) (c)

(d)

Fig. 5. Examples of 5(a) color patches 5(b) RGGB CFA fil-

tered patches and 5(c) zero-phase whitened patches used in

the training. 5(d) All the 80 learned features stored in the first

hidden layer of the trained network.

The training and validation examples were collected from

two distinct sets, having respectively 2992 and 10 Flickr im-

ages. Having been demosaicked one way or another, these

images were not fed directly to the neural network or it might

wind up simply imitating other demosaicking algorithms. To

guarantee their quality, we downsampled the images by 2 af-

ter convolving them with a Gaussian kernel of standard devi-

ation equal to 1.2 [12].

We tested our neural network against some best perform-

ing methods available. The results, stated in both RMSE and

the zipper effect as in [13], are reported in Tab.1 for the two

datasets (Fig.6). As stated in [14], the last five Kodak images

were used to tune KSVD. They were excluded for fairness.

Fig. 6. The Kodak and McMaster dataset

4. DISCUSSION

The experiments show that our tiny neural network compares

favorably with these state-of-the-art algorithms. We have de-

liberately chosen images of vibrant colors to constitute our

training set, which explains in part that the resultant network



(a) original (b) NN (ours) (c) KSVD [14] (d) CS [15] (e) ZW [16] (f) SSD [13] (g) Paliy [17] (h) HA [18]

(i) original (j) NN (k) KSVD (l) CS (m) ZW (n) SSD (o) Paliy (p) HA

(q) original (r) NN (s) KSVD (t) CS (u) ZW (v) SSD (w) Paliy (x) HA

Fig. 7. Comparison of the seven algorithms: our neural network does not do well when image patterns to recover oscillate

much, in part because the chosen patch size 4 × 4 may be too small for it to detect high frequency variations. In contrast, it

does interpolate well where color changes abruptly. Visually speaking, contour stencil [15] yields the closest numerical results.

However, the neural network seems to be more accurate on blobs.

McMaster NN KSVD CS SSD HA Paliy ZW
1 8.52 9.67 8.92 10.60 10.45 11.61 11.65
2 4.66 4.89 5.03 5.03 5.08 5.36 5.44
3 5.75 5.54 5.57 5.81 6.53 5.97 6.03
4 3.70 3.49 4.37 3.90 4.53 4.48 5.09
5 4.84 5.98 5.37 6.17 6.00 6.82 7.20
6 3.61 3.36 3.82 4.33 4.41 5.14 5.65
7 3.83 2.68 2.50 3.80 4.37 2.78 2.79
8 3.16 2.96 3.26 3.46 3.76 3.23 3.49
9 3.57 3.65 3.97 4.11 4.32 4.79 5.17
10 3.05 3.13 3.25 3.30 3.50 3.88 4.02
11 2.78 2.74 2.97 3.06 3.33 3.61 3.66
12 2.96 3.20 3.32 3.33 3.54 3.82 3.89
13 2.42 2.51 2.61 2.50 2.65 2.99 3.03
14 2.96 3.09 3.28 3.15 3.27 3.76 3.60
15 2.89 3.02 3.10 3.15 3.29 3.51 3.63
16 4.82 6.32 6.15 7.15 6.94 8.92 8.11
17 5.44 6.05 5.55 7.40 7.28 8.83 9.10
18 4.38 4.71 5.03 5.16 5.22 5.34 5.34
rmse avg. 4.07 4.27 4.33 4.74 4.91 5.26 5.38
zipper avg. 0.34 0.34 0.30 0.33 0.38 0.38 0.39

Kodak KSVD Paliy ZW NN SSD CS HA
01 2.23 2.44 2.73 4.62 4.70 4.09 5.35
02 2.19 2.26 2.42 3.32 3.91 4.32 3.49
03 1.54 1.69 1.86 2.57 3.05 3.88 3.04
04 1.98 2.34 2.53 3.05 3.10 4.05 3.30
05 2.64 3.33 3.25 4.19 4.36 4.72 4.88
06 2.13 2.30 2.38 4.24 4.16 4.29 4.78
07 1.64 1.82 2.06 2.45 2.94 3.82 2.84
08 3.33 3.51 3.72 5.72 5.19 5.14 6.32
09 1.62 1.67 1.74 2.37 2.64 3.69 2.75
10 1.78 1.87 1.92 2.40 2.75 3.71 2.88
11 2.16 2.36 2.43 3.80 3.71 4.11 4.09
12 1.48 1.62 1.70 2.48 2.57 3.50 2.58
13 3.74 3.95 4.19 7.76 6.48 5.10 8.09
14 2.81 3.51 3.65 4.01 4.71 5.01 4.66
15 2.25 2.62 2.73 3.17 3.94 4.59 3.97
16 1.44 1.58 1.56 2.98 3.57 3.95 3.63
17 1.95 2.02 2.02 2.95 2.74 2.20 2.97
18 3.17 3.65 3.50 5.20 4.55 4.15 5.20
19 1.95 2.20 2.19 3.52 3.02 2.54 3.40
rmse avg. 2.21 2.46 2.55 3.72 3.79 4.04 4.11
zipper avg. 0.22 0.24 0.25 0.36 0.32 0.23 0.35

Table 1. The results from our neural network (NN), (the Ko-

dak-tuned) KSVD [14], CS [15, 19], SSD [13, 20], HA [18],

Paliy [17] and ZW [16, 21] on McMaster (top) and Kodak

(bottom). The row-wise best results are in bold. The columns

are ordered to reflect the performances in RMSE. We only

show the average zipper effects for lack of space.

NN HA CS KSVD ZW Paliy SSD
4×4 5×5 5×5 8×8 9×9 12×12 15×15

Table 2. Comparison of the neighborhood size demanded by

the seven algorithms. Note that because of their design, these

algorithms do not necessarily use every pixel in a given neigh-

borhood. Nonetheless, the neighborhood size remains a basic

indicator of the associated algorithmic complexity.

works better on McMaster than on Kodak. Fig.7 shows that

the network handles abrupt color transitions remarkably well.

However, its also reveals the neural network’s inability to re-

cover high frequency patterns, which is likely to result from

the network’s diminutive input size (Tab.2).

Recent evidence [5] suggests that endowed with a higher

capacity, a deep network should perform substantially better

with larger patches, because more structural information can

then be discovered. However, training a larger network incurs

a higher computational cost. It took roughly three days on a

8-core Linux machine to train the current network.

As opposed to many noise sensitive algorithms, the neu-

ral network approach may be extended to noisy image de-

mosaicking, which is certainly of a bigger practical interest

because denoising and demosaicking could then be handled

in one single procedure [22, 23].
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