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Abstract For an automated liver disease diagnosis system, the ability to assess the
liver segmentation quality in the absence of ground truth is crucial. Because it helps
detect algorithm failures at inference time so that erroneous outputs can be prevented
from impacting the diagnosis accuracy. In addition, it can be used to quality check
annotated data for training and testing purposes. In this paper, we introduce the
concept of liver profile as the basis for an exploratory data analysis approach to
identifying poorly segmented images in multi-sequence MR liver studies.

1 Introduction

Liver segmentation is key to automated liver disease diagnosis [7]. The ability to
assess the segmentation quality in the absence of ground truth is thus of interest. It
allows to detect algorithm failures at inference time, which is critically important in
practice because an erroneous liver segmentation may lead to errors in downstream
tasks such as lesion detection [3, 4, 12, 17, 18] and image registration [1, 9], thereby
negatively impacting the overall diagnosis accuracy. Additionally, this ability can
also help ensure the quality of annotated training and test datasets by identifying
poor (image, segmentation mask) pairs, potentially resulting in better algorithms and
more accurate performance evaluation.

The quality of liver segmentation, either by human annotators or by an algorithm,
depends on the quality of the medical images under analysis. Strongly degraded
images generally result in inaccurate segmentations. However, it is hard to quantify
image quality in absolute terms, because images of good quality for one task can be
poor for another [2]. For instance, in a medical image, it can be easy to ascertain
the presence of a liver lesion. But its measurement and characterization can prove
difficult if its textural details are hard to discern. For this reason, human experts tend
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to disagree with each other when it comes to rating medical images in terms of their
overall quality [6, 13, 15], especially when they are trained in different medical fields
[11].

How to automate segmentation quality assessment without access to ground truth
has drawn some attention lately. Most existing methods are of supervised nature
and need a set of well annotated samples to begin with. For example, the work
[10] suggests to train a SVM-based regressor on geometric, intensity and gradient
features to predict several segmentation error metrics with respect to ground truth.
Similarly, a framework was presented in [16] which uses a model to evaluate an
image’s segmentation quality by checking its consistencywith someknown annotated
samples. In a few recent works [5, 8, 14], the authors proposed to use uncertainty
information from model produced probabilistic segmentation maps. Although these
methods can be used to detect segmentation failures at inference time, they do not
lend themselves easily to training data quality control because manual annotations
are almost always binary valued.

In this work, we propose an exploratory data analysis approach to assessing liver
segmentation quality in MR studies of the abdomen. It is based on the following
observations: 1) an MR study typically consists of multi-sequence volumes and 2)
within a study, all the volumes portray the same liver. Therefore, a study’s well
segmented volumes should yield consistent liver size statistics.

This paper is organized as follows. We first introduce the concept of liver profile
and describe its properties. Next we propose a simple algorithm to estimate the
liver profile from a multi-sequence liver study and demonstrate its effectiveness at
detecting incorrectly segmented image slices. Finally we conclude and discuss future
work.

2 Liver profile

2.1 Definition

Consider a human liver. We define its profile as a function that maps a transverse
plane to its corresponding liver cross-sectional area. By definition, it thus requires
an infinity of axial liver slices and cannot be computed directly. Since the liver is a
smooth three dimensional object, its profile must be continuous. Therefore, it can be
estimated from a medical scan produced by imagining techniques such as CT and
MR, which samples liver slices on a regular interval.

Specifically, consider an =-slice axial liver scan with slice spacing equal to BI
(in millimeters). Let (8 denote the area in square millimeters of the liver cross-
section captured by the scan’s 8-th slice. Let q be an interpolation through the points
{(8, (8)}8=0,...,=−1. For example, the linear interpolation leads to

q(G) = (( bGc+1 − ( bGc) (G − bGc) + ( bGc , G ∈ [0, = − 1) (1)
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where bGc denotes the largest integer less than or equal to G ∈ R. The interpolation is
then scaled to result in the scan profile %(C) := q(C/BI). Over its support {C |%(C) >
0}, the scan profile can be considered as an approximation of the liver profile. The
support’s length is referred to as the scan’s liver span.

Note that in Eq.(1), it is an arbitrary choice to give the index of zero to the scan’s
first slice. Instead, we could set its index to another value, such as 1, and maintain the
same concept of scan profile. In other words, both liver and scan profile are uniquely
defined only up to a translation.

2.2 Properties

In the absence of major clinical events (such as a partial hepatectomy), a liver tends to
have a rather static profile over a short period of time. Moreover, as long as a person’s
longitudinal axis points to the same direction, their liver axial cross-sectional areas
are relatively insensitive to rigid body motions. As a result, a patient’s various well
performed scans should lead to similar-looking scan profiles, all of which resemble
the same underlying liver profile.

Though the liver profiles may vary in shape from person to person (see Fig.1),
they have an asymmetrical bell shape in general. It is because the liver cross-sectional
area usually peaks at a transverse plane which passes through both left and right liver
lobes and gradually decreases as we move the plane towards the liver’s superior or
inferior surfaces.

2.3 Estimation

Generally speaking, a scan profile is a noisy and partial estimate of its corresponding
liver profile. Its approximation quality depends on the scan’s slice spacing, voxel
resolution and the accuracy of liver cross-sectional area measurements. A smaller
slice spacing, finer voxel resolution and more accurate liver segmentation lead to a
scan profile of higher approximation quality.

For patients who have undergone multiple liver scans, it is possible to obtain
an even better estimation of their liver profiles than the individual scan profiles
themselves. To do so, consider a patient’s< scan profiles {%8}8=1,...,<. Their supports,
as defined previously, are of relative value because two different scans rarely portray
the same abdominal region. However, since all the scan profiles describe the same
liver, we can find a common coordinate system to represent them.

Without loss of generality, let us assume that the patient’s first scan profile %1 has
the greatest liver span. We fix it as the reference and translate the other scan profiles
to align with it individually. To this end, we use the following metric to assess the
quality of alignment between two positive valued functions with finite support
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agreement( 5 , 6) =

∫
{C | 5 (C)>0,6 (C)>0} min( 5 (C), 6(C))3C∫
{C | 5 (C)>0,6 (C)>0} max( 5 (C), 6(C))3C

(2)

which is the Jaccard index of the areas underneath these two functions restricted to
their common support. Aligning a scan profile thus amounts to finding its optimally
translated version that has the maximum agreement with the reference.

Algorithm 1: Liver Profile Estimation
Data: < scan profiles {%8 }8=1,...,<
Result: < aligned scan profiles and estimated liver profile %∗

U← 0;
8 ← 0;
%∗0 ← the scan profile with the greatest liver span;
while U < 0.99 and 8 < 5 do

Align all the scan profiles with %∗0 ;
%∗1 ← pointwise median of the aligned scan profiles i.e. Eq.(3);
U← agreement(%∗0 , %

∗
1 );

8 ← 8 + 1;
%∗0 ← %∗1 ;

end
%∗ ← %∗0 ;

Once all the scan profiles have been aligned, we may estimate the liver profile.
Specifically, the estimator’s support is defined as the union of those of the aligned
scan profiles and its values are set pointwise to the median of the aligned scan
profiles. It leads to

%∗ (C) = median∪1≤8≤<,%8 (C)>0{%8 (C)}, C ∈ ∪1≤8≤<{C |%8 (C) > 0} (3)

where we continue to use %8 to denote an aligned scan profile.
Next, we substitute the estimated liver profile %∗ for %1 and align the entire set of

scan profiles again with this new reference. These two operations are then repeated
until successively obtained %∗ stabilizes, which usually takes less than 5 iterations.
We call the estimate %∗ from the final iteration the patient’s estimated liver profile.
This procedure’s pseudo code is provided in Algorithm 1.

3 Experiments

3.1 Data

Let us first describe our data. It is a private collection of 70 MR studies of adult
patients from three different hospitals. The number of volumes per study varies from
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4 to 11, totaling 558 volumes in all. They were acquired using various T1, T2 and
diffusion weighted MR sequences with slice spacing ranging from 2mm to 11mm.
A team of radiologists examined them one volume at a time and created the liver
masks for the entire dataset, leading to 28458 marked slices.

Quality checking the annotated volumes one by one is tedious and cannot scale
to larger datasets. We now describe how the liver profile can help us quickly identify
the likely inaccurate segmentation masks. We had experimented with both linear and
cubic spline interpolation schemes for constructing scan profiles. They yielded little
difference. Therefore, for simplicity, we chose linear interpolation i.e. Eq.(1).

3.2 Exploratory analysis at the volume level

Study-wise, the scan profiles from our annotated volumes are broadly consistent.
To show it, we used the agreement metric defined in Eq.(2). Specifically, for the
aligned scan profiles of a study, we are interested in their individual agreement
with the study’s estimated liver profile. Clearly, those who agree with the estimated
liver profile agree well with themselves, too. To simplify the presentation, in the
following, we call an aligned scan profile’s agreement with its estimated liver profile
its coherence score, which thus also takes values in the interval [0, 1].

A typical MR study consists of volumes with varying slice spacing and voxel
resolution, leading to scan profiles of different approximation quality. As a result,
their coherence scores rarely equal 1. For example, the aligned scan profiles shown
in Fig.1 and Fig.4, though they agree with their respective estimated liver profile,
have coherence score ranging from 0.96 to 0.99.

Fig. 1: aligned scan profiles of two annotated multi-sequence MR liver studies from
two different patients. They are consistent within the study. In the legend, we print
for each scan profile its coherence score. These two examples show that the liver
profile varies in shape across people.
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(a) (b)

Fig. 2: (a) plots the cumulative distribution function (CDF) of the 558 coherence
scores. They are mainly distributed close to 1. In fact, 90% of them exceed 0.95. (b)
shows the CDF of the ratio between the segmented and expected liver cross-sectional
area of the marked slices. The distribution of this slice-level statistic is concentrated
around 1, indicating that the two area measures broadly agree.

We ran Algorithm 1 on our data one study at a time. It resulted in as many coher-
ence scores as there are volumes in our data. Fig.2a plots their cumulative distribution
function. Most of them indeed lied close to 1. Specifically, 90 percent of these vol-
umes had a coherence score above 0.95. To detect inaccurate segmentations at the
volume level, we thus retrieved the 55 volumes and their liver masks corresponding
to the lowest 10 percent of the obtained coherence scores. They belonged to a total of
47 studies, each of which had at most 2 of these volumes. After a visual inspection,
we found that among them, 43 annotated volumes with the lowest coherence scores
were faulty because of either bad image quality or a visible segmentation error. See
Fig.3 for an example.

3.3 Exploratory analysis at the slice level

For these faulty segmentations, their aligned scan profiles also help locate where
the faults occur. It is because they help identify the image slices whose segmented
liver cross-sectional area differs considerably from what is expected from their
corresponding estimated liver profile at the same axial axis locations. In the absence
of exceptional medical conditions which reduced or expanded the liver size, such a
disagreement suggests a segmentation error, which may also be caused by bad image
quality.

Therefore, we can use the aligned scan profiles to explore potential segmentation
errors at the slice level. Specifically, for every annotated slice, we computed the
ratio between its segmented liver cross-sectional area and the expected area from
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(a) aligned scan profiles (b) cross-sectional area disagreement

(c) a smaller-than-expected segmentation (d) a larger-than-expected segmentation

Fig. 3: (a) the aligned scan profiles of a study. A significant cross-sectional area
disagreement between a scan profile and its estimated liver profile at the same axial
axis location indicates a segmentation error. (b) The blue (DWI_B400_500) scan
profile identifies a few slices with smaller than expected liver cross-sectional area
(pointed by the red arrows) whereas the indigo (T2_SSFSE) scan profile suggests
over-segmentation in multiple slices (pointed by the black arrows). For example, (c)
(resp. (d)) shows a detected slice with too small (resp. too large) a segmented area.
Bad image quality seems to be responsible for the error in (d).

its corresponding estimated liver profile at the same axial axis location. It resulted
in 28458 sample values whose cumulative distribution function is shown in Fig.2b.
As expected, this statistic is concentrated around 1. Too high or too low a ratio thus
indicates a segmentation error (see Fig.3).
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3.4 Span disparity

The liver profile also helps identify an additional subset of annotated volumes,
which exhibit span disparity. It occurs when the liver is only partially observed in
the image volume. This can originate from two possible causes. First, the scan’s
axial range is insufficient to cover the whole liver, leading to a partial acquisition.
Second, part of the scanned liver fails to be recognized due to measurement errors
or poor image quality. This latter results in a partial segmentation. Regardless of the
cause, our approach allows to estimate such a volume’s missing liver portions in a
straightforward manner. See Fig.4a for an illustration.

It is also easy to detect an image volume with span disparity because the liver
span of its scan profile is much shorter than that of its corresponding estimated
liver profile. To differentiate between the two possible causes, the location of the
discrepancy matters. If it happens at one end of the volume, with no additional image
slices outside the scan profile’s support, the cause can be determined to be a partial
acquisition. Otherwise, it is a partial segmentation (Fig.4).

(a) span disparity (b) cause of partial segmentation

Fig. 4: (a) shows the span disparity of a scan profile with respect to its estimated
liver profile. The red line represents the axial extent of the superior liver portion
missing from this volume. Additional image slices do exist to the right the scan
profile’ support. But they suffer from severe artefacts and were not marked by the
radiologists. (b) shows one of these remaining slices.

The span disparity does not need to result in a low coherence score (Fig.4a). It
is independent of cross-sectional area disagreement in that one does not necessarily
entail the other. But both can happen at the same time, too.
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4 Conclusion

In this paper, based on the concept of liver profile, we have presented an exploratory
data analysis approach to liver segmentation quality control for multi-sequence MR
liver studies. Our method is efficient and allows to locate inaccurately segmented
image slices.

Due to its mild assumptions, this method may also carry over to the analysis
of segmented liver contours arising from multi-phase CT or longitudinal studies.
Furthermore, it may also be applicable to assessing the segmentation quality of
other anatomies in a similar context.
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