
IEEE SIGNAL PROCESSING LETTERS 1

Can a Single Image Denoising Neural Network
Handle All Levels of Gaussian Noise?

Yi-Qing Wang, and Jean-Michel Morel

Abstract—A recently introduced set of deep neural networks
designed for the image denoising task achieves state-of-the-art
performance. However, they are specialized networks in that each
of them can handle just one noise level fixed in their respective
training process. In this note, by investigating the distribution
invariance of the natural image patches with respect to linear
transforms, we show how to make a single existing deep neural
network work well across all levels of Gaussian noise, thereby
allowing to significantly reduce the training time for a general-
purpose neural network powered denoising algorithm.

Index Terms—deep neural network, distribution invariance,
image denoising, natural patch space

I. INTRODUCTION

RECENTLY, a set of deep neural networks, or multi-layer
perceptrons (MLPs) designed for the image denoising

task [1] has been shown to outperform BM3D [2], widely
accepted as the state-of-the-art. Although these enormous deep
networks only work at the noise levels which they were trained
for, this turn of events clearly demonstrates the potential of a
pure learning strategy. A philosophical difference sets the two
patch-based methods apart: BM3D, a major spin-off of the
original non-local means [3], seeks information exclusively
inside the noisy image while the neural network derives all
its power by looking at noisy and clean patch pairs gathered
from other images. Other algorithms exist [4]–[8] which fall
between these two ends of the spectrum.

It is well known [9], [10] that neural networks form a class
of universal approximators. Recent studies [11] further suggest
that multi-layer neural networks tend to be more efficient in
signal representation than their traditional one-hidden-layer
counterpart. Whatever their architectures, neural networks in
a regression framework seek to approximate the conditional
expectation under some input distribution. In our setting, let
x, x̃, and y denote the clean, noisy and denoised patch. Note
that y does not necessarily have the same dimension as x̃.
All the neural networks [1] under this study, for instance,
produce a y∈R17×17 based on a noisy observation x̃∈R39×39

which includes not only y’s corresponding noisy pixels but
also its surrounding ones. Also note that with the true natural
patch distribution beyond reach, a huge number of patches are
drawn stochastically [12] from a large natural image dataset

This work was supported in part by DxO Labs, ERC(AG Twelve Labours)
and ONR N00014-97-1-0839.

The authors are with CMLA, Ecole Normale Supérieure de Cachan, Cachan,
94230, France (e-mail: yqwang9@gmail.com; morel@cmla.ens-cachan.fr).

to provide the underlying distribution for computing

θ
∗ = argmin

θ

E‖ f (x̃,θ)− x‖2
2 (1)

= argmin
θ

E‖ f (x̃,θ)−E[x|x̃]‖2
2

where f (·,θ) : x̃ 7→ y is a neural network parametrized by its
connection weights θ. Due to this problem’s non-convex nature
in general, instead of the potentially intractable θ∗, a good θ,
judged on the basis of the resulting network’s generalization
error, is usually accepted as a solution.

In spite of their impressive performance, the proposed deep
networks are impractical. As stated in the paper itself [1]: our
most competitive MLP is tailored to a single level of noise and
does not generalize well to other noise levels. This is a serious
limitation which we already tried to overcome with an MLP
trained on several noise levels. However, the latter does not yet
achieve the same performance for σ = 25 as the specialized
MLP. Since a standard general-purpose algorithm for Gaussian
noise removal ought to be able to handle all levels of noise,
this limitation seems to require a series of such networks, one
for each noise level, which is impractical and even unrealistic
especially in view of their prohibitive training time [13].

In this note, through an analysis of the interplay between
the neural networks and the underlying patch distribution they
seek to learn, we show how to construct a linear transform
that moves natural image patches within the support of their
distribution, which is then used to make a single existing deep
neural network work well across all levels of Gaussian noise.
In the concluding section, using the natural patch distribution
invariance argument, we hint that further patch normalization
may help scale down these deep neural networks by reducing
their domain of definition without compromising their power.

II. A SINGLE NEURAL NETWORK FOR ALL NOISE LEVELS

To make a single neural network work for all noise levels,
first we need to investigate the statistical regularity of the natu-
ral patch space, or the support of the natural patch distribution,
with respect to some linear transforms: we drew 106 39-by-
39 random patches from the Berkeley Segmentation Dataset
(BSD500) rendered to grayscale with Matlab’s rgb2gray
function. The patches were then normalized using the formula

p̄ = (p/255−0.5) ·5 (2)

provided in [1] in order to conform them to these deep neural
networks’ training patch distribution. For each normalized
patch, we computed the mean and standard deviation of its
1521 pixels and then plotted their population distribution along



IEEE SIGNAL PROCESSING LETTERS 2

(a) (b)

(c) (d)

Fig. 1. 2D histogram of random patches from (1a) the grayscale BSD500 and (1c) the grayscale PASCAL VOC 2012. Their horizontal (resp. vertical) axis
represents the normalized patch’s mean (resp. standard variation). (1d) and (1b) plot their respective marginal cumulative distribution function along the patch
mean. In both cases, the normalized patches have their mean concentrated around −0.5. Also note that at the two ends of the horizontal axis, there are two
important flat patch clusters because of saturation.

these two dimensions. For comparison, we did the same with
the PASCAL VOC 2012 dataset.

The results (Fig.1) show that the means of the normalized
natural patches concentrate around −0.5. Even without access
to the supervised pairs used in [1], we can therefore expect
their neural networks trained according to the criterion (1)
to do well with patches from this neighborhood because of
the sheer number of examples available. Moreover, the patch-
wide variance peaking at the patch-wide means around −0.5
strongly indicates a higher tolerance for linear transforms
there, that is, it is more probable for a natural patch p
transformed by

q = a · (p− s) with s some constant patch and a≥ 0

to remain natural if q’s mean is close to −0.5.
To verify this conjecture that a linear transform exists which

only moves patches within the support of the natural patch
distribution, we designed a test that shifts the means of the
patches to the same value before denoising them using a
neural network, after which the shifted differences were added
back individually to obtain their final, denoised versions. It is
important to note that thanks to a high ratio between the patch
size and σ, estimating the clean patch mean from its noisy
version (Line 7 in Test) is very reliable.

Test Patch Mean Normalization Test
1: Input: n clean patches p j of dimension 39×39
2: Output: n denoised (resp. clean) 17×17 patches p̂ j (resp. p j)
3: Parameter: noise variance σ2 and desired patch mean value m

4: for j = 1 to n do
5: retrieve the 17×17 clean patch p j in the center of p j

6: generate the normalized noisy patch

x̃ j ← ((p j +n j)/255−0.5) ·5

with n j having 1521 i.i.d. Gaussian random variables N (0,σ2)

and n j independent of n j′ for j 6= j′

7: compute the patch mean shift s j =
1

1521 ∑
1521
k=1 x̃ jk−m where x̃ jk

is the k-th pixel in x̃ j

8: shift the network’s input ∀k, x̃ jk← x̃ jk− s j

9: denoise y j = fσ(x̃ j,θ) where fσ(·,θ) is the deep neural network
[1] trained with Gaussian noise standard deviation σ

10: shift the network’s output by the same amount ∀k, y jk← y jk +

s j in the opposite direction
11: reverse the normalization p̂ j ← (y j/5+0.5) ·255
12: end for

Running the test on 105 39-by-39 random patches drawn
from the grayscale BSD500, we computed the resultant root
mean square error (RMSE). Fig.2 shows that regardless of



IEEE SIGNAL PROCESSING LETTERS 3

the applied noise strength σ, the best empirical performance
is attained with the patch mean shift set to −0.5, thereby
fully confirming our supposition. In addition, observe that the
optimal patch mean shift incurs surprisingly little RMSE loss,
which is less than 0.1 for a noise level as high as 75.

(a)

(b)

Fig. 2. (2a) (resp. (2b)) plots the RMSEs resulting from the test with σ = 25
(resp. 75). The blue curve records the dedicated network’s performance with
the patch mean values ranging from −1.5 to 0.9. And the red line is the RMSE
achieved on the same test data without patch mean shift. Other available neural
networks have also been tested with very similar results.

The previous analysis paves the way for a generic network
able to handle all levels of noise. Let us use the neural network
trained with the noise level σ∗ for instance. To restore a noisy
patch p̃ with noise standard deviation at σ, one multiplies p̃ by
σ∗σ−1, apply the patch mean shift and let the neural network
operate on the normalized patch (see Algorithm). Henceforth
σ∗ itself becomes a parameter for further optimization, too.

A comparison among various σ∗-indexed generic networks
constructed this way (see Fig.3) shows that the one built with
σ∗= 25 is the best, which is hardly surprising because a neural
network can learn the most about the underlying patch space
when noise is weak. Moreover, except for the extremely noisy
case, one sees no tangible difference in Fig.3b between a
dedicated network and the best generic network. Also observe
that the higher the σ∗, the worse the resulting RMSEs at low
noise levels, an expected phenomenon since a high σ∗σ−1

exaggerates the patch-wide variation so much that resultant
patches no longer remain in the natural patch space.

The implication of this analysis for future research is
straightforward: training a network with the same architecture
but at an even lower noise level may be rewarding. But it
should also be said that too low a σ∗ is not likely to work well

Algorithm Generic Neural Network Denoising
1: Input: noisy patch p̃ of dimension 39×39 and its noise level σ

2: Output: denoised 17×17 patch p̂

3: Parameter: noise level σ∗ of the trained neural network fσ∗(·,θ)
and optimal shift m=−0.5

4: Scale the noise p̃← σ∗σ−1 p̃
5: Normalize the patch x̃← (p̃/255−0.5) ·5
6: Compute the patch mean shift s = 1

1521 ∑
1521
k=1 x̃k −m where x̃k is

the k-th pixel in x̃
7: Shift the network’s input mean ∀k, x̃k← x̃k− s
8: Run the generic neural network denoising y = fσ∗(x̃,θ)
9: Shift the network’s output by the same amount ∀k, yk← yk + s in

the opposite direction
10: Reverse the normalization p̂← (y/5+0.5) ·255 · (σ∗σ−1)−1

(a)

(b)

Fig. 3. (3a) Performance discrepancy between dedicated neural networks and
σ∗-indexed generic neural networks at handling different noise levels. The
horizontal axis marks various test Gaussian noise levels and the vertical axis
the achieved RMSEs on 105 random patches from BSD500. (3b) singles out
the best generic network with σ∗ = 25.

in a strong noise environment, as already observed in Fig.3.
Because the factor σ∗σ−1 will then flatten all the meaningful
patch-wide variations, leaving the network unable to tell one
patch from another.

Put differently, what we have shown is that the trained
deep network is not very different from its most informative
section. Hence, one may want to train a network on mean
normalized patches to improve performance, thanks to a denser
data distribution. However, in so doing, one implicitly trains
on a marginal distribution and thus risks losing information.

To conclude, we tested the Algorithm with σ∗= 25 on some



IEEE SIGNAL PROCESSING LETTERS 4

TABLE I
COMPARISON BETWEEN DEDICATED NEURAL NETWORKS AND OUR

ALGORITHM (GENERIC σ∗ = 25)

σ = 25 dedicated generic
computer 7.99 8.10

dice 2.77 2.77

flower 4.59 4.63

girl 3.38 3.41

traffic 9.16 9.22

valldemossa 11.85 11.99

avg. 6.62 6.68

σ = 35 dedicated generic
computer 9.63 9.82

dice 3.29 3.45

flower 5.53 5.64

girl 3.88 4.07

traffic 10.81 10.94

valldemossa 14.21 14.28

avg. 7.89 8.03

σ = 50 dedicated generic
computer 11.59 11.92

dice 4.17 4.50

flower 6.85 7.06

girl 4.60 4.92

traffic 12.83 13.07

valldemossa 16.98 17.06

avg. 9.50 9.75

σ = 65 dedicated generic
computer 13.16 13.82

dice 4.83 5.39

flower 7.89 8.20

girl 5.28 5.74

traffic 14.32 14.78

valldemossa 18.67 18.99

avg. 10.69 11.15

σ = 75 dedicated generic
computer 14.10 14.78

dice 5.48 6.14

flower 8.57 8.96

girl 5.66 6.20

traffic 15.08 15.56

valldemossa 19.97 20.34

avg. 11.47 11.99

σ = 170 dedicated generic
computer 20.51 21.81

dice 9.23 10.92

flower 12.84 13.64

girl 8.79 10.54

traffic 20.71 21.72

valldemossa 26.42 27.26

avg. 16.41 17.64

real images. The test set (Fig.4) comprises six noiseless images
proposed for benchmarking various denoising algorithms [14]
and the results are compiled in Tab.I. Recall that even for
σ = 25, our generic network is different from the dedicated
one, in that ours involves one additional step of patch mean
shift. The obtained results are thus consistent with Fig.2a.

(a) (b) (c) (d) (e) (f)

Fig. 4. Test images for algorithm comparison (4a) computer (4b) dice (4c)
flower (4d) girl (4e) traffic (4f) valldemossa. All images are of dimension
704×469 except for valldemossa (769×338).

III. CONCLUSION

In this note, we have shown how to make a single existing
neural network work well across all levels of Gaussian noise,
thereby allowing to reduce significantly the training time for a
general-purpose neural network powered denoising algorithm.

To make deep neural network based algorithm more prac-
tical, the other major challenge is to reduce their sizes. This
might be achieved through further patch normalization so as
to reduce the neural network’s input complexity. Rotation and
scale invariances of natural image statistics might be used for
that purpose.

REFERENCES

[1] H. Burger, C. Schuler, and S. Harmeling, “Image denoising: Can plain
neural networks compete with BM3D?” in IEEE Conf. Computer Vision
and Pattern Recognition, 2012, pp. 2392–2399.

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration
by sparse 3D transform-domain collaborative filtering,” in Electronic
Imaging, 2008.

[3] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” Multiscale Modeling & Simulation, vol. 4,
no. 2, pp. 490–530, 2005.

[4] M. Elad and M. Aharon, “Image denoising via sparse and redundant rep-
resentations over learned dictionaries,” IEEE Trans. Image Processing,
vol. 15, no. 12, pp. 3736–3745, 2006.

[5] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in IEEE Int. Conf. Computer
Vision, 2009, pp. 2272–2279.

[6] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in IEEE Int. Conf. Computer Vision, 2011,
pp. 479–486.

[7] Y. Q. Wang and J. M. Morel, “SURE guided gaussian mixture image
denoising,” SIAM Journal on Imaging Sciences, vol. 6, no. 2, pp. 999–
1034, 2013.

[8] H. Burger, C. Schuler, and S. Harmeling, “Learning how to com-
bine internal and external denoising methods,” in Pattern Recognition.
Springer, 2013, pp. 121–130.

[9] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989.

[10] A. R. Barron, “Approximation and estimation bounds for artificial neural
networks,” Machine Learning, vol. 14, no. 1, pp. 115–133, 1994.

[11] Y. Bengio, “Learning deep architectures for ai,” Foundations and
Trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in Proc. Int. Conf. Computational Statistics. Springer, 2010,
pp. 177–186.

[13] H. Burger, “Modelling and learning approaches to image denoising,”
Ph.D. dissertation, Eberhard Karls Universität Tübingen, Wilhelmstr. 32,
72074 Tübingen, 2013.

[14] M. Lebrun, “An Analysis and Implementation of the BM3D Image
Denoising Method,” Image Processing On Line, vol. 2012, pp. 175–
213, 2012.


