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Abstract

A recently introduced set of deep neural networks designed for the image denoising task achieves
state-of-the-art performance. However, they are specialized networks in that each of them can
handle just one noise level fixed in their respective training process. In this note, by investigating
the distribution invariance of the natural image patches with respect to linear transforms, we show
how to make a single existing deep neural network work well across all levels of Gaussian noise,
thereby allowing to significantly reduce the training time for a general-purpose neural network
powered denoising algorithm.

1 Introduction

Recently, a set of deep neural networks, or multi-layer perceptrons (MLPs) designed for the image
denoising task [5] has been shown to outperform BM3D [8], widely accepted as the state-of-the-art.
Although these enormous deep networks only work at the noise levels which they were trained for,
this turn of events clearly demonstrates the potential of a pure learning strategy. A philosophical
difference sets the two patch-based methods apart: BM3D, a major spin-off of the original non-local
means [4], seeks information exclusively inside the noisy image while the neural network derives all
its power by looking at noisy and clean patch pairs gathered from other images. Other algorithms
exist [6, 9, 12–14] which fall between these two ends of the spectrum.

It is well known [1, 10] that neural networks form a class of universal approximators. Recent
studies [2] further suggest that multi-layer neural networks tend to be more efficient in signal
representation than their traditional one-hidden-layer counterpart. Whatever their architectures,
neural networks in a regression framework seek to approximate the conditional expectation under
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some input distribution. In our setting, let x, x̃, and y denote the clean, noisy and denoised patch.
Note that y does not necessarily have the same dimension as x̃. All the neural networks [5] under this
study, for instance, produce a y ∈ R17×17 based on a noisy observation x̃ ∈ R39×39 which includes
not only y’s corresponding noisy pixels but also its surrounding ones. Also note that with the true
natural patch distribution beyond reach, a huge number of patches are drawn stochastically [3] from
a large natural image dataset to provide the underlying distribution for computing

θ∗ = argmin
θ

E‖f(x̃, θ)− x‖22 (1)

= argmin
θ

E‖f(x̃, θ)− E[x|x̃]‖22

where f(·, θ) : x̃ 7→ y is a neural network parametrized by its connection weights θ. Due to this
problem’s non-convex nature in general, instead of the potentially intractable θ∗, a good θ, judged
on the basis of the resulting network’s generalization error, is usually accepted as a solution.

In spite of their impressive performance, the proposed deep networks are impractical. As stated
in the paper itself [5]: our most competitive MLP is tailored to a single level of noise and does
not generalize well to other noise levels. This is a serious limitation which we already tried to
overcome with an MLP trained on several noise levels. However, the latter does not yet achieve the
same performance for σ = 25 as the specialized MLP. Since a standard general-purpose algorithm
for Gaussian noise removal ought to be able to handle all levels of noise, this limitation seems to
require a series of such networks, one for each noise level, which is impractical and even unrealistic
especially in view of their prohibitive training time [7].

In this note, through an analysis of the interplay between the neural networks and the underlying
patch distribution they seek to learn, we show how to construct a linear transform that moves
natural image patches within the support of their distribution, which is then used to make a single
existing deep neural network work well across all levels of Gaussian noise. In the concluding section,
using the natural patch distribution invariance argument, we hint that further patch normalization
may help scale down these deep neural networks by reducing their domain of definition without
compromising their power.

2 A single neural network for all noise levels

To make a single neural network work for all noise levels, first we need to investigate the statistical
regularity of the natural patch space, or the support of the natural patch distribution, with respect
to some linear transforms: we drew 106 39-by-39 random patches from the Berkeley Segmentation
Dataset (BSD500) rendered to grayscale with Matlab’s rgb2gray function. The patches were then
normalized using the formula

p̄ = (p/255− 0.5) · 5 (2)

provided in [5] in order to conform them to these deep neural networks’ training patch distribution.
For each normalized patch, we computed the mean and standard deviation of its 1521 pixels and
then plotted their population distribution along these two dimensions. For comparison, we did the
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same with the PASCAL VOC 2012 dataset.

(a) (b)

(c) (d)

Figure 1: 2D histogram of random patches from 1(a) the grayscale BSD500 and 1(c) the grayscale
PASCAL VOC 2012. Their horizontal (resp. vertical) axis represents the normalized patch’s mean
(resp. standard variation). 1(d) and 1(b) plot their respective marginal cumulative distribution
function along the patch mean. In both cases, the normalized patches have their mean concentrated
around −0.5. Also note that at the two ends of the horizontal axis, there are two important flat
patch clusters because of saturation.

The results (Fig.1) show that the means of the normalized natural patches concentrate around
−0.5. Even without access to the supervised pairs used in [5], we can therefore expect their neural
networks trained according to the criterion (1) to do well with patches from this neighborhood
because of the sheer number of examples available. Moreover, the patch-wide variance peaking at
the patch-wide means around −0.5 strongly indicates a higher tolerance for linear transforms there,
that is, it is more probable for a natural patch p transformed by

q = a · (p− s) with s some constant patch and a ≥ 0
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to remain natural if q’s mean is close to −0.5.

To verify this conjecture that a linear transform exists which only moves patches within the support
of the natural patch distribution, we designed a test that shifts the means of the patches to the
same value before denoising them using a neural network, after which the shifted differences were
added back individually to obtain their final, denoised versions. It is important to note that thanks
to a high ratio between the patch size and σ, estimating the clean patch mean from its noisy version
(Line 7 in Test) is very reliable.

Test Patch Mean Normalization Test
1: Input: n clean patches pj of dimension 39× 39

2: Output: n denoised (resp. clean) 17× 17 patches p̂j (resp. pj)

3: Parameter: noise variance σ2 and desired patch mean value m

4: for j = 1 to n do

5: retrieve the 17× 17 clean patch pj in the center of pj

6: generate the normalized noisy patch

x̃j ← ((pj + nj)/255− 0.5) · 5

with nj having 1521 i.i.d. Gaussian random variables N (0, σ2) and nj independent of nj′ for j 6= j′

7: compute the patch mean shift sj =
1

1521

∑1521
k=1 x̃jk −m where x̃jk is the k-th pixel in x̃j

8: shift the network’s input ∀k, x̃jk ← x̃jk − sj
9: denoise yj = fσ(x̃j , θ) where fσ(·, θ) is the deep neural network [5] trained with Gaussian noise

standard deviation σ

10: shift the network’s output by the same amount ∀k, yjk ← yjk + sj in the opposite direction

11: reverse the normalization p̂j ← (yj/5 + 0.5) · 255
12: end for

Running the test on 105 39-by-39 random patches drawn from the grayscale BSD500, we com-
puted the resultant root mean square error (RMSE). Fig.2 shows that regardless of the applied
noise strength σ, the best empirical performance is attained with the patch mean shift set to −0.5,
thereby fully confirming our supposition. In addition, observe that the optimal patch mean shift
incurs surprisingly little RMSE loss, which is less than 0.1 for a noise level as high as 75.

The previous analysis paves the way for a generic network able to handle all levels of noise. Let us
use the neural network trained with the noise level σ∗ for instance. To restore a noisy patch p̃ with
noise standard deviation at σ, one multiplies p̃ by σ∗σ−1, apply the patch mean shift and let the
neural network operate on the normalized patch (see Algorithm). Henceforth σ∗ itself becomes a
parameter for further optimization, too.

A comparison among various σ∗-indexed generic networks constructed this way (see Fig.3) shows
that the one built with σ∗ = 25 is the best, which is hardly surprising because a neural network
can learn the most about the underlying patch space when noise is weak. Moreover, except for the
extremely noisy case, one sees no tangible difference in Fig.3(b) between a dedicated network and
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(a) (b)

Figure 2: 2(a) (resp. 2(b)) plots the RMSEs resulting from the test with σ = 25 (resp. 75). The
blue curve records the dedicated network’s performance with the patch mean values ranging from
−1.5 to 0.9. And the red line is the RMSE achieved on the same test data without patch mean
shift. Other available neural networks have also been tested with very similar results.

Algorithm Generic Neural Network Denoising

1: Input: noisy patch p̃ of dimension 39× 39 and its noise level σ

2: Output: denoised 17× 17 patch p̂

3: Parameter: noise level σ∗ of the trained neural network fσ∗(·, θ) and optimal shift m = −0.5
4: Scale the noise p̃← σ∗σ−1p̃

5: Normalize the patch x̃← (p̃/255− 0.5) · 5
6: Compute the patch mean shift s = 1

1521

∑1521
k=1 x̃k −m where x̃k is the k-th pixel in x̃

7: Shift the network’s input mean ∀k, x̃k ← x̃k − s
8: Run the generic neural network denoising y = fσ∗(x̃, θ)

9: Shift the network’s output by the same amount ∀k, yk ← yk + s in the opposite direction

10: Reverse the normalization p̂← (y/5 + 0.5) · 255 · (σ∗σ−1)−1

the best generic network. Also observe that the higher the σ∗, the worse the resulting RMSEs at
low noise levels, an expected phenomenon since a high σ∗σ−1 exaggerates the patch-wide variation
so much that resultant patches no longer remain in the natural patch space.

The implication of this analysis for future research is straightforward: training a network with the
same architecture but at an even lower noise level may be rewarding. But it should also be said
that too low a σ∗ is not likely to work well in a strong noise environment, as already observed in
Fig.3. Because the factor σ∗σ−1 will then flatten all the meaningful patch-wide variations, leaving
the network unable to tell one patch from another.

Put differently, what we have shown is that the trained deep network is not very different from its
most informative section. Hence, one may want to train a network on mean normalized patches to
improve performance, thanks to a denser data distribution. However, in so doing, one implicitly
trains on a marginal distribution and thus risks losing information.
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(a) (b)

Figure 3: 3(a) Performance discrepancy between dedicated neural networks and σ∗-indexed generic
neural networks at handling different noise levels. The horizontal axis marks various test Gaussian
noise levels and the vertical axis the achieved RMSEs on 105 random patches from BSD500. 3(b)
singles out the best generic network with σ∗ = 25.

To conclude, we tested the Algorithm with σ∗ = 25 on some real images. The test set (Fig.4)
comprises six noiseless images proposed for benchmarking various denoising algorithms [11] and the
results are compiled in Tab.1. Recall that even for σ = 25, our generic network is different from the
dedicated one, in that ours involves one additional step of patch mean shift. The obtained results
are thus consistent with Fig.2(a).

(a) (b) (c) (d) (e) (f)

Figure 4: Test images (a) computer (b) dice (c) flower (d) girl (e) traffic (f) valldemossa. All images
are of dimension 704× 469 except for valldemossa (769× 338).

3 Conclusion

In this note, we have shown how to make a single existing neural network work well across all levels
of Gaussian noise, thereby allowing to reduce significantly the training time for a general-purpose
neural network powered denoising algorithm.

To make deep neural network based algorithm more practical, the other major challenge is to reduce
their sizes. This might be achieved through further patch normalization so as to reduce the neural
network’s input complexity. Rotation and scale invariances of natural image statistics might be
used for that purpose.
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Table 1: Comparison between dedicated neural networks and our algorithm (generic σ∗ = 25)

σ = 25 dedicated generic

computer 7.99 8.10

dice 2.77 2.77

flower 4.59 4.63

girl 3.38 3.41

traffic 9.16 9.22

valldemossa 11.85 11.99

avg. 6.62 6.68

σ = 35 dedicated generic

computer 9.63 9.82

dice 3.29 3.45

flower 5.53 5.64

girl 3.88 4.07

traffic 10.81 10.94

valldemossa 14.21 14.28

avg. 7.89 8.03

σ = 50 dedicated generic

computer 11.59 11.92

dice 4.17 4.50

flower 6.85 7.06

girl 4.60 4.92

traffic 12.83 13.07

valldemossa 16.98 17.06

avg. 9.50 9.75

σ = 65 dedicated generic

computer 13.16 13.82

dice 4.83 5.39

flower 7.89 8.20

girl 5.28 5.74

traffic 14.32 14.78

valldemossa 18.67 18.99

avg. 10.69 11.15

σ = 75 dedicated generic

computer 14.10 14.78

dice 5.48 6.14

flower 8.57 8.96

girl 5.66 6.20

traffic 15.08 15.56

valldemossa 19.97 20.34

avg. 11.47 11.99

σ = 170 dedicated generic

computer 20.51 21.81

dice 9.23 10.92

flower 12.84 13.64

girl 8.79 10.54

traffic 20.71 21.72

valldemossa 26.42 27.26

avg. 16.41 17.64
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