
IEEE SIGNAL PROCESSING LETTERS 1

Exploiting the Redundancy of Deep Neural
Networks for Image Denoising

Yi-Qing Wang, and Jean-Michel Morel

Abstract—Deep neural networks have been shown to hold great
promise for various computer vision and image processing tasks.
However, they are usually computationally expensive to train and
deploy because of their enormous sizes. In this note, using certain
invariances of the natural patch distribution, we show that state-
of-the-art image denoising networks are redundant in both their
architectures and their domain of definition, which suggests that
a much smaller network trained on a much smaller dataset might
do the task just as well. Two crucial numerical experiments lend
full support to our invariance arguments.

Index Terms—deep neural network, natural patch space,
distribution invariance, redundancy analysis

I. INTRODUCTION

RECENTLY, a deep neural network based approach [1] to
image denoising has been shown to outperform BM3D

[2], widely accepted as the state-of-the-art until now. This
dramatic turn of event clearly demonstrates the supremacy of
a pure learning strategy over careful handcrafting, a prevailing
practice in image processing. A philosophical difference sets
these two patch-based methods apart: BM3D, a major spin-
off of the original non-local means [3], seeks information
exclusively inside the noisy image while the neural network
derives all its power by looking at noisy and clean patch pairs
gathered from other images. Other algorithms exist [4], [5],
[6] which fall between these two ends of the spectrum.

It is well known [7] that neural networks form a class of uni-
versal approximators. Recent studies [8] further suggest that
multi-layer, or deep, neural networks tend to be more efficient
in signal representation than their traditional one-hidden-layer
counterpart. Whatever their architectures, neural networks in
a regression framework seek to approximate the conditional
expectation under some input distribution. In our setting, let
x, x̃, and y denote the clean, noisy and denoised patch. Note
that y does not necessarily have the same dimension as x̃.
All the neural networks [1] under this study, for instance,
produce a y∈R17×17 based on a noisy observation x̃∈R39×39

which includes not only y’s corresponding noisy pixels but
also those surrounding ones. Also note that with the true patch
distribution beyond reach, a huge number of patches are drawn
from a large natural image dataset to provide the conditional
expectation’s underlying distribution

θ
∗ = argmin

θ

E‖ f (x̃,θ)− x‖2
2 (1)

= argmin
θ

E‖ f (x̃,θ)−E[x|x̃]‖2
2

The authors are with CMLA, Ecole Normale Supérieure de Cachan, Cachan,
94230, France (e-mail: yqwang9@gmail.com; morel@cmla.ens-cachan.fr).

where f (·,θ) : x̃ 7→ y is a neural network and θ its connection
weights. Due to this problem’s non-convex nature in general,
instead of the potentially intractable θ∗, a good θ, judged on
the basis of the resulting network’s generalization error, is
usually accepted as a solution.

Despite their impressive performance, the proposed deep
networks [1] are impractical for the majority of industrial
applications because they impose a daunting computational
cost, besides being inflexible in response to different noise
levels. In this work, by analyzing the interplay between the
neural networks and the underlying patch distribution they
seek to learn, we construct a generic neural network able to
handle all levels of Gaussian noise and suggest two ways to
scale down these networks without compromising their power.

II. TOWARDS ONE GENERIC NETWORK

A standard algorithm for Gaussian noise removal needs to
know the noise’s variance, which seems to require, however
unrealistically, a series of networks, one for each noise level.
Fortunately, this is not the case. To show it, we started by
investigating the statistical regularity of the natural patch
space: we drew 106 random patches of dimension 39× 39
from the Berkeley Segmentation Dataset (BSD500) rendered
to grayscale with Matlab’s rgb2gray function. These patches
were then normalized using the formula

p̄ = (p/255−0.5) ·5

provided in [1]. For each normalized patch, we computed
the mean and standard deviation of its 1521 pixels and then
plotted their population distribution along these two dimen-
sions. For comparison, we did the same with the Kodak image
dataset (http://r0k.us/graphics/kodak). The results (Fig.1) show
that most normalized natural patches are distributed around
(−0.5,0.5). Even without access to the supervised pairs used
in [1], we can therefore expect their neural networks trained
according to the criterion (1) to do well with patches from
this neighborhood because of the sheer number of examples
available. Moreover, the patch-wide variance peaking at the
patch-wide means around −0.5 implies a higher tolerance
for linear transforms there. That is, it is more probable for
a natural patch p transformed by

q = a · (p− s) with s some constant patch and a≥ 0

to remain natural if q’s mean is close to −0.5.
To verify this hypothesis, we shifted the mean of individual

patches before denoising them. Running Algorithm 1 on 105

39×39 random patches drawn from the grayscale BSD500, we



IEEE SIGNAL PROCESSING LETTERS 2

(a) (b)

Fig. 1. 2D histogram of random patches from (1a) the grayscale BSD500 and (1b) the grayscale Kodak. The horizontal (resp. vertical) axis represents the
normalized patch’s mean (resp. standard variation). In both cases, patches concentrate around (−0.5,0.5). Also note that at the two ends of the horizontal
axis, there are two important flat patch clusters.

computed the resulting root mean square error (RMSE). Fig.2
shows that regardless of the applied noise strength σ, the best
empirical performance is attained with the patch mean shift set
to −0.5, thereby confirming our conjecture. In addition, it is
important to note that thanks to a high ratio between the patch
size and σ, estimating the clean patch mean from its noisy
version (Line 7 in Algorithm 1) is fairly reliable. The fact that
the patch mean shift yields a slightly worse RMSE may be
attributed to our indiscriminate treatment of all patches.

Algorithm 1 Patch Mean Normalization Test
1: Input: n clean patches p j of dimension 39×39
2: Output: n denoised (resp. clean) 17×17 patches p̂ j (resp. p j)
3: Parameter: noise variance σ2 and desired patch mean value m

4: for j = 1 to n do
5: retrieve the 17×17 clean patch p j in the center of p j

6: generate the normalized noisy patch

x̃ j ← ((p j +n j)/255−0.5) ·5

with n j having 1521 i.i.d. Gaussian random variables N (0,σ2) and
n j independent of n j′ for j 6= j′

7: compute the patch mean shift s j =
1

1521 ∑
1521
k=1 x̃ jk−m where x̃ jk is

the k-th pixel in x̃ j

8: shift the network’s input ∀k, x̃ jk← x̃ jk− s j

9: denoise y j = fσ(x̃ j,θ) where fσ(·,θ) is the deep neural network [1]
trained with Gaussian noise standard deviation σ

10: shift the network’s output by the same amount ∀k, y jk← y jk +s j in
the opposite direction

11: reverse the normalization p̂ j ← (y j/5+0.5) ·255
12: end for

The previous analysis paves the way for a generic network
able to handle all levels of noise. Let us use the neural network
trained with the noise level σ∗ for instance. To restore a noisy
patch p̃ with noise standard deviation at σ, one multiplies p̃ by
σ∗σ−1, apply the patch mean shift and let the neural network
operate on the normalized patch (Algorithm 2). Henceforth σ∗

itself becomes a parameter for further optimization, too.
Fig.3 shows that the generic network built with σ∗ = 25 is

the best, which is hardly surprising because a neural network
can learn the most about the underlying patch space when
noise is weak. Moreover, except for the extremely noisy case,

(a)

(b)

Fig. 2. (2a) (resp. (2b)) plots the RMSEs resulting from Algorithm 1 with
σ= 25 (resp. 75). The blue curve records the dedicated network’s performance
with the patch mean values ranging from −1.5 to 0.9. And the red line is
the RMSE achieved on the same test data without patch mean shift. Other
available neural networks have also been tested with very similar results.

one sees no tangible difference in Fig.3 between a dedicated
network and the best generic network. Also observe that the
higher the σ∗, the worse the RMSEs at low noise levels, an
expected phenomenon since a high σ∗σ−1 exaggerates the
patch-wide variation so much that resultant patches no longer
remain in the natural patch space.

The implication of this analysis is straightforward: training a
network with the same architecture but at an even lower noise
level may be rewarding. But it should also be said that too low
a σ∗ is not likely to work well in a strong noise environment,
as already observed in Fig.3. Because the factor σ∗σ−1 will



IEEE SIGNAL PROCESSING LETTERS 3

Algorithm 2 Generic Neural Network Denoising
1: Input: noisy patch p̃ of dimension 39×39 and its noise level σ

2: Output: denoised 17×17 patch p̂

3: Parameter: noise level σ∗ of the trained neural network fσ∗ (·,θ) and
optimal shift m=−0.5

4: Scale the noise p̃← σ∗σ−1 p̃
5: Normalize the patch x̃← (p̃/255−0.5) ·5
6: Compute the patch mean shift s = 1

1521 ∑
1521
k=1 x̃k −m where x̃k is the

k-th pixel in x̃
7: Shift the network’s input mean ∀k, x̃k← x̃k− s
8: Run the generic neural network denoising y = fσ∗ (x̃,θ)
9: Shift the network’s output by the same amount ∀k, yk ← yk + s in the

opposite direction
10: Reverse the normalization p̂← (y/5+0.5) ·255 · (σ∗σ−1)−1

(a)

(b)

Fig. 3. (3a) Performance discrepancy between dedicated neural networks and
σ∗-indexed generic neural networks (using Algorithm 2) at handling different
noise levels. The horizontal axis marks various test Gaussian noise levels and
the vertical axis the achieved RMSEs on 105 random patches from BSD500.
(3b) singles out the best generic network with σ∗ = 25.

then flatten all the meaningful patch-wide variations, leaving
the network unable to tell one patch from another.

Put differently, what we have shown so far is that the trained
deep network is not very different from its most informative
section. Hence, if it had been trained on mean normalized
patches, its performance would have been better thanks to
a denser data distribution. Even with the current network, it
may still be possible to improve Algorithm 2 with a variance
dependent patch mean shift, resulting in an undulating section
on the mean-variance plane. However, this would require
additional knowledge of the training patch distribution.

To conclude this section, we tested our simple algorithm
with σ∗ = 25 on some real images. The test images (Fig.4)

TABLE I
COMPARISON BETWEEN DEDICATED NEURAL NETWORKS AND OUR

ALGORITHM (GENERIC σ∗ = 25)

σ = 25 dedicated generic
computer 7.99 8.10

dice 2.77 2.77

flower 4.59 4.63

girl 3.38 3.41

traffic 9.16 9.22

valldemossa 11.85 11.99

avg. 6.62 6.68

σ = 35 dedicated generic
computer 9.63 9.82

dice 3.29 3.45

flower 5.53 5.64

girl 3.88 4.07

traffic 10.81 10.94

valldemossa 14.21 14.28

avg. 7.89 8.03

σ = 50 dedicated generic
computer 11.59 11.92

dice 4.17 4.50

flower 6.85 7.06

girl 4.60 4.92

traffic 12.83 13.07

valldemossa 16.98 17.06

avg. 9.50 9.75

σ = 65 dedicated generic
computer 13.16 13.82

dice 4.83 5.39

flower 7.89 8.20

girl 5.28 5.74

traffic 14.32 14.78

valldemossa 18.67 18.99

avg. 10.69 11.15

σ = 75 dedicated generic
computer 14.10 14.78

dice 5.48 6.14

flower 8.57 8.96

girl 5.66 6.20

traffic 15.08 15.56

valldemossa 19.97 20.34

avg. 11.47 11.99

σ = 170 dedicated generic
computer 20.51 21.81

dice 9.23 10.92

flower 12.84 13.64

girl 8.79 10.54

traffic 20.71 21.72

valldemossa 26.42 27.26

avg. 16.41 17.64

come from the Image Processing On Line (IPOL) website and
the results are compiled in Tab.I. Recall that even for σ = 25,
our generic network is different from the dedicated one, in
that ours involves one additional step of patch mean shift.
The obtained results are thus consistent with Fig.2a.

(a) (b) (c) (d) (e) (f)

Fig. 4. Test images for algorithm comparison (4a) computer (4b) dice (4c)
flower (4d) girl (4e) traffic (4f) valldemossa. All images are of dimension
704×469 except for valldemossa (769×338).

III. NEURAL NETWORK DOMAIN REDUCTION

This second issue is less task specific. Viewed as an ordinary
function, one major source of a neural network’s redundancy
comes from its domain of definition [9]. If we can both restrict
its domain and keep all the training examples at the same time,
a neural network shall be able to learn better for two reasons.
First, the image patches’ intrinsic geometry makes it essential
for a good but rudimentary neural network to acquire a certain
symmetry, although this property does not seem to follow
naturally from the way a network is parametrized, thereby
leading to a larger than necessary architecture and training
pool. It is thus desirable to remove this degree of freedom
from the network’s inputs. Second, if we can somehow convert
and bring training examples to a smaller area that would
otherwise be scattered around in the domain, in a spirit akin
to importance sampling in Monte Carlo, the network should
learn better with more data (see the previous section).



IEEE SIGNAL PROCESSING LETTERS 4

(a) (b) (c)

Fig. 5. (5a) Some random patches of dimension 39× 39 from the grayscale BSD500 (5b) their geometrically normalized versions (5c) the geometrically
normalized noisy versions of (5a) with σ = 25 (using Algorithm 3). There is one noticeable noise induced error (the fourth from left in the second row).

Fortunately, this is feasible, again due to the natural patch
distribution being invariant to many linear operations. The two
geometrically normalizing operations proposed in Algorithm 3
are such examples. They are reversible, non patch size specific,
and thus can be applied without difficulty to a possibly smaller
denoised patch as in our case. In addition, invariant to linear
transforms by design, they are also insensitive to noise, pro-
vided that the patch they operate on is large enough. As shown
in Fig.5, Algorithm 3 is indeed robust. The inconsistency that
occurs at times due to noise, however, is unlikely to change
much the result in RMSE because it affects only those patches
with insignificant intrinsic orientation. For an empirical valida-
tion of this hypothesis, we ran 105 geometrically normalized
random noisy patches (σ = 25) through the neural network
trained with σ∗ = 25 and applied the reversed operators T−1

p
on the outputs. The resulting RMSE (9.96), compared with that
(9.95) from a direct application of the neural network using the
same noisy patches without geometrical normalization, fully
confirmed our approach.

Algorithm 3 Patch Geometrical Normalization
1: Input: a possibly noisy patch p of dimension 39×39
2: Output: its geometrically normalized version pg and the associated

geometrically normalizing operator Tp : p 7→ pg

3: Let 1 be a column vector of 39 ones and var(·) be the variance of the
argument vector’s entries.

4: if var(p1)> var(p′1) then
5: pg← p′ and Tp← t with t the standard matrix transposition
6: else
7: pg← p and Tp← I with I the identity
8: end if
9: if the sum of the top half of pg is bigger than that of its bottom half

then
10: Flip pg upside down and Tp← f◦Tp with f the flipping operation
11: else
12: Tp← I◦Tp

13: end if

ACKNOWLEDGMENT

This work was supported in part by CNES, ERC(AG Twelve
Labours), and ONR N00014-97-1-0839.

REFERENCES

[1] H. Burger, C. Schuler, and S. Harmeling, “Image denoising: Can plain
neural networks compete with BM3D?” in CVPR, 2012, pp. 2392–2399.

[2] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image restoration
by sparse 3D transform-domain collaborative filtering,” in Electronic
Imaging, 2008.

[3] A. Buades, B. Coll, and J. M. Morel, “A review of image denoising
algorithms, with a new one,” MMS, vol. 4, no. 2, pp. 490–530, 2005.

[4] D. Zoran and Y. Weiss, “From learning models of natural image patches
to whole image restoration,” in ICCV, 2011, pp. 479–486.

[5] Y. Q. Wang and J. M. Morel, “SURE guided Gaussian mixture image
denoising,” SIIMS, vol. 6, no. 2, pp. 999–1034, 2013.

[6] H. Burger, C. Schuler, and S. Harmeling, “Learning how to combine in-
ternal and external denoising methods,” in Pattern Recognition. Springer,
2013, pp. 121–130.

[7] A. R. Barron, “Approximation and estimation bounds for artificial neural
networks,” Machine Learning, vol. 14, no. 1, pp. 115–133, 1994.

[8] Y. Bengio, “Learning deep architectures for AI,” Foundations and
trends R© in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[9] J. L. Lisani, A. Buades, and J. M. Morel, “How to explore the patch
space.” Inverse Problems & Imaging, vol. 7, no. 3, 2013.


