The Preliminary Guides to the MegaWave2 Software, version 3.01

Volume One

MegaWave2 User’s GGuide

by Jacques Froment

Copyright (©) CMLA
Ecole Normale Supérieure de Cachan
61 avenue du Président Wilson
94235 Cachan cedex, France
All Rights Reserved

June 20, 2007

http://www.cmla.ens-cachan.fr/Cmla/Megawave

Contents MegaWave2 User’s Guide Contents

Contents

1 Introduction

1.1 What is MegaWave2 e
1.2 Motivations and history
1.3 Authors and acknowledgements L Lo L
1.4 Main changes between MegaWave2 versions 1.x, versions 2.x and versions 3.x . .
1.5 Contents of the MegaWave2 guides,
1.6 What you will find in thisguide L.
1.7 The MegaWave2 philosophy: basic principles
1.8 MegaWave2 Macros o
1.9 The MegaWave2 Compiler
Installation
2.1 Imstallation of the system
2.1.1 Upgrading to a new MegaWave2 version
2.1.2 Restoration of the package
2.1.3 Directories structure L. Lo o
2.1.4 Set up the environment
2.1.5 Make the software ready Lo
2.1.6 No longer registration, but still license
2.2 Installation for the user L
2.2.1 Set up the environment Lo Lo
2.2.2 Make the directory treeready
Getting started
3.1 Asimplemodule
3.2 Some optimizations L
3.3 A little more complex extension

Module’s header

4.1 Syntax . ..o e
4.1.1 Name Statement
4.1.2 Author Statement
4.1.3 Function Statement
4.1.4 Labo Statement
4.1.5 Group Statement
4.1.6 Version Statement
4.1.7 Usage Statement L

4.2 Options e e

4.3 Needed arguments L L

4.4 Optional arguments Lo

4.5 Variable arguments oL

4.6 Unused arguments oL

4.7 Examples of headers

4.7.1 Useofoptions e

O 3 =3 O U U N

—_
@)

11
11
11
12
12
15
16
16
16
17

19
19
24
26

Contents MegaWave2 User’s Guide Contents 3

4.7.2 Use of optional arguments L. 41

4.7.3 Use of variable and unused arguments 42

4.8 System’s optionso 43

5 System’s macros 45
5.1 Macros SUmmaryot e e e e e e 45
5.2 Listof moduleso 75

6 User’s macros 76
6.1 Header of a Macro s 76
6.2 How to use user’s macroS v v v v i e e e e e e e 76

7 Documentation hdrd
7.1 Document amodule 77
7.2 Document a macroo 77
7.3 Print the documentation 78

8 Annex 79
8.1 License. 79
8.2 How to contact the CMLA e 80

Index 81

Introduction MegaWave2 User’s Guide Introduction 4

1 Introduction

1.1 What is MegaWave2

MegaWave2 is a software environment designed to help people to write algorithms on signal
processing and image analysis. The user is assumed to be a non-computer scientist, in particular
he is likely to be a mathematician (notice however that a good knowledge of the C language is
assumed).

This means that the programmer should focus his mind on the algorithm only and not on pure
computer problems (such as how to read an image, how to display a movie on the screen, how
to select a curve with the mouse, how to manage an object library,. . .)

The solution adopted by MegaWave2 is the concept of modules, that is, of black boxes where the
algorithms are described as C functions, without any assumption about the context in which the
modules may be executed. It is the task of the MegaWave2 compiler (basically a MegaWave2
preprocessor followed by a standard C compiler) to make from a module a run-time command,
a function of a library or a function to be run under a window-oriented interpreter.

1.2 Motivations and history

MegaWave2 has been basically created to help researchers in writing algorithms in the domain of
signal processing and image analysis. MegaWave2 allows a diffusion of the scientific information
along all members of Jean-Michel Morel’s research team (and also between members of other
teams): a module written to experiment a process may be used by somebody else several months
later. MegaWave2 was born in 1993 at the CEREMADE, a mathematical laboratory of the
Paris-IX Dauphine University, France, inside a research group in image processing conducted by
Jean-Michel Morel. It succeeded to MegaWave (renamed MegaWavel) which essentially was a
set of C files related to the wavelet transform . Notice that in MegaWave2, if the wavelet part
still exists, it only represents a small piece of all the mathematical methods for image analysis
that can be found. Since the move of the Morel’s team in 1999, MegaWave2 is no longer directed
by the CEREMADE but by the CMLA (Centre de Mathématiques et de Leurs Applications),
CNRS UMR-8536, at the Ecole Normale Supérieure de Cachan, Cachan, France.

We decided to put MegaWave2 in the public domain in 1994 (under some restrictions with
version 1.x), since some algorithms may be worthy of interest for people working in the field
of signal processing and image analysis. The source of each algorithm is given, and therefore
each researcher in the world can check it and understand it more deeply than he could do by
reading the published article. Thus, we experiment a new kind of scientific publication: the
“soft-publication”. The main scientific interest of soft-publication in image processing is to offer
reproducible research 2.

Moreover, we put together with the modules the whole MegaWave2 environment, so people can

! Actually, MegaWavel was a quite different system since it did not have any specific pre-processor. The advan-
tages of MegaWavel were the simplicity and the documentation, which was written in french and therefore which
did not misuse the Shakespeare language. Strong protests from our U.S. partners have urged us to change that !

2The reproducible research paradigm is exposed in the report
http://www-stat.stanford.edu/~donoho/Reports /1995 /wavelab. pdf.

Introduction MegaWave2 User’s Guide Introduction 5

write new modules which may use (or not) our algorithms. Thus we hope to help the scientific
community, by encouraging (in the limit of our capacities) the communication and the emergence
of new ideas.

Please notice that, because we could not check MegaWave2 on all possible computer architectures
and systems, there is only a limited number of computers on which you may run the software
without encountering difficulties. But even if your computer is not compatible with the ones we
have, you still can read the algorithms by reading the sources of the modules and even better,
since MegaWave2 version 2.x, you may adapt the system so that it can run on your computer.

Last, please be indulgent with this software (which is not perfect - far from that - and which is
still in development). It has been written essentially by mathematicians (and not by computer
scientists), using the short time left after teaching and research activities.

1.3 Authors and acknowledgements

As MegaWavel, MegaWave2 has been created by Jacques Froment, but with the help of a greater
number of people. New developments in MegaWave2 are still directed by Jacques Froment, with
the help since 1998 of Lionel Moisan who is in charge of collecting and updating public modules
and user’s macros.

Our thanks go first to Jean-Michel Morel, without whom nothing would have been possible.

It is hardly possible to cite here all the people who participated in MegaWave2 by writing new
modules, or simply by giving valuable advices. Here is the list of people who wrote modules
included in the public MegaWave2 package Version 3.01, released in June 2007 :

Andrés Almansa, Chiaa Babya, Toni Buades, Frédéric Cao, Vicent Caselles, Antonin Cham-
bolle, Guillaume Charpiat, Thierry Cohignac, Bartomeu Coll, Jean-Pierre D’Alés, Francoise
Dibos, Vincent Feuvrier, Jacques Froment, Frédéric Guichard, Yann Guyonvarc’h, Yan Jin-
hai, Claire Jonchery, Georges Koepfier, Said Ladjal, Kamal Lakhiari, José-Luis Lisani, Simon
Masnou, Lionel Moisan, Pascal Monasse, Pablo Muse, Denis Pasquignon, Florent Ranchin,
Amandine Robin, Olivia Sanchez, Catalina Sbert, Frédéric Sur.

Special thanks Claire Moisan who revised the text of the guides.

1.4 Main changes between MegaWave2 versions 1.x, versions 2.x and versions
3.x

This guide is intended to be the User’s Guide of MegaWave2 versions 2.x and 3.x and it should
not be used with former versions 1.x (check the version number with mwvers). For those of you
who were familiar with MegaWave2 versions 1.x, I give below a short list of the most important
changes between versions 1.x and version 2.00. To get an updated list of all changes, please read
the file CHANGES in the distribution package.

e The Registration procedure to get a free license does no longer exists : with versions 2.x
you do not have any registration form to send.

Introduction MegaWave2 User’s Guide Introduction 6

e The sources of MegaWave2 kernel (preprocessor and libraries) are given. Therefore, you
are now able to modify the kernel, for example to adapt it on a new machine architecture.

e In return, the kernel binaries are no longer distributed : the local MegaWave2 administra-
tor has to compile the kernel by himself.

o MegaWave2 has been adapted for Linuz on i386.

e Effort has been done to offer more modules with associated demos, and former modules
have been fully checked (some of them may see their name changed). The src directory
has been deeply reorganized.

e The doc directory structure has changed : see Section 7.

e The data directory structure has changed, together with the search path convention. In
short, a PUBLIC subdirectory has been created where all public data not specifically
associated to some modules have to be put. To resolve an input filename, a module now
searches inside all subdirectories of data (See Volume 2 “MegaWave2 System Library”).

The main change between versions 2.x and versions 3.x is about the MegaWave2 preprocessor,
which decodes the modules source files. In versions 2.x the ’traditional’ preprocessor includes
a complete C parser and lexical analyzer generator. This preprocessor handles correctly C
preprocessor directives (that begin with the pound sign #, as #define or #include). By
reading system include files, the 'traditional’ preprocessor can decode modules that use objects
defined in these include files (such as a type name defined by typedef). However, the C parser
assumes a ANSI or K&R standard C grammar whereas on Linux system, include files do not
always strictly follow these standards (indeed, the GNU C compiler provides several language
features not found in standard C). As a result of, on some glibc versions of Linux the MegaWave2
'traditional’ preprocessor fails in decoding include files and outputs a parsing error. After several
years of workarounds, it appeared impossible to adapt the ’traditional’ preprocessor to the GNU
C language and therefore a new MegaWave2 preprocessor was developed.

The versions 3.x include the new MegaWave2 ’light’ preprocessor. The adjective ’light’ refers
to the fact that this preprocessor does not try to implement all standard C features : it reads
and decodes what is essential in the modules source files, and nothing more. In particular,
C preprocessor directives are no more decoded and therefore parsing errors on system include
files are avoided. Of course, the ’light’ preprocessor has a serious drawback : since the tree
of the C code is incomplete, it may fail on some unusual features. For example, as #define
directives are no more decoded, the line #define real float will not be read and if you use
a parameter of type real in the main function, a parse error will be generated (since types of
parameters are essential for the main function only, you may use a parameter of type real in
all other functions). Such limitations may be seen very restrictive, however it appears that over
the 310 modules of the last version 2.31, only one of them had to be modified to fulfill the new
conditions.

1.5 Contents of the MegaWave2 guides

There are four guides about MegaWave2. Here are their contents:

Introduction MegaWave2 User’s Guide Introduction 7

e Volume 1: “MegaWave2 User’s Guide”. This is the present guide. It introduces the
user to the MegaWave2 philosophy and environment, it explains the software installation
and gives the directions for use.

e Volume 2: “MegaWave2 System Library”. It is a reference manual on the functions
of the system library. It also details all the available MegaWave2 objects. Users who do
not need to write modules may skip it.

e Volume 3: “MegaWave2 User’s Modules Library”. It is a reference manual on the
public modules. This manual is automatically generated by the MegaWave2 compiler to
reflect the current modules library. You can get an updated version of this volume at any
time. It is essential for all users.

e Volume 4: “XMegaWave2 User’s Guide”. (Not yet available). It is a guide for
the XMegaWave extension to MegaWave2, called XMegaWave2, which is a Windowed-
oriented interface and interpreter. At this time, the MegaWave2 distribution package does
not include the XMegaWave extension.

1.6 What you will find in this guide

The section 1 gives you an overall idea about the software. In Section 2 you will learn how to
install it and how to install the environment of each user. The section 3 guides you to write
and compile your first MegaWave2 module. Next sections give references about the header’s
module (section 4) and the system macros (section 5). The section 7 explains how to write
the documentation attached to a module. In the last section 8 you will find the instructions to
register your copy of MegaWave2 and some miscellaneous references.

1.7 The MegaWave2 philosophy: basic principles

The aim of MegaWave2 is to make the coding of signal and image-oriented algorithms easier.
An algorithm is implemented as a function (or a set of functions) written in C language; such a
function (or set of functions) is called a module.

The programmer does not write a complete program: what a module becomes is the matter
of the MegaWave2 compiler. This compiler adds input/output code to generate a run-time
command: the module’s command. The module can then be called under the shell as Unix
commands (and in a compatible mode with the MegaWavel software). But the MegaWave2
compiler can also add interface to a window-oriented interpreter (XMegaWave2); the module is
then included in the interpreter as a new function. The MegaWave2 compiler does even more;
see Section 1.9 page 10 for details.

What does a module’s source looks like ? you can refer to Section 3 for a first example of a
module. In short, the source of a module is a file (its name is the module name followed by the
.c extension) which contains pure C instructions. It begins with a header put into comments
(/* ... */), so the C compiler ignores it (see Section 4 for a description of the header). But
the MegaWave2 preprocessor decodes this header. Informations are defined about the module,
so are the author’s name, the version number, etc. More important are the informations about

Introduction MegaWave2 User’s Guide Introduction 8

the usage, that is, about the input/output objects (or input/output variables) of the
module. This usage may say that a given variable (for example a float) is an optional input
with default value 1.0, and that another variable (for example an image with gray levels stored
as float numbers) is an output.

After the header comes the regular C body, where functions are defined. One function must
always be present, it is the main function of the module and it must have the same name
as the module. When we refer to input/output objects of the module, we think about the
parameters of this main function. Only the main function is global (i.e. can be accessed from
other modules), all other functions are local.

In the module’s skeleton below, the main function is module and the input/output objects are
objl,0bj2,...:
/* mwcommand
[header, including usage of objl,obj2,...]
*/
internal_function(al,a2,....)

[definition of this function]

module(objl,obj2,....)
{

internal_function(bl,b2,...);
}

A module can access to the main function of any other module, following these rules:

e They are public modules. Such modules are available for all users; they are located in
the MegaWave2 system directory (for example $MEGAWAVE2). It is the responsibility of the
MegaWave2 administrator to manage this set of modules (see Section 2.1).

e They are private modules. All MegaWave2 users coding new modules generate their
own private modules (located in the directory $MY_MEGAWAVE2). A module cannot access
to another private module from another user. Therefore, if somebody has written a module
of some interest for others, the MegaWave2 administrator should make it public.

A module belongs to a group. A group puts together all modules dealing about the same
subject. For example, you can imagine a group fourier where all the algorithms about the
Fourier transform are put. But you may want to distinguish between Fourier applied on one-
dimensional signals and Fourier applied on images. So you can define subgroups of the group

Introduction MegaWave2 User’s Guide Introduction 9

fourier, as for example signal and image: you get two groups named fourier/signal and
fourier/image.

How are the groups defined ? You define a group by creating a directory corresponding to the
name of the group into the existing directory $MEGAWAVE2/src (or $MY_MEGAWAVE2/src). In our
former example you must create $MEGAWAVE2/src/fourier/signal and
$MEGAWAVE2/src/fourier/image. The source of the modules (with .c extension) has to be
put into those directories. With MegaWave2 versions 1.x, in addition you had to specify in the
header of each module the name of the group (see Section 4): group={"fourier/signal"} for
all modules in the directory $MEGAWAVE2/src/fourier/signal and group={"fourier/image"?}
for all modules in the directory $MEGAWAVE2/src/fourier/image. This is no longer required in
MegaWave2 versions 2.x.

What is the meaning of the input/output objects ? First, they are variables of C type. All scalar
types are allowed, such as char, int, long, float, ... More sophisticated types are available.
They are called MegaWave2 memory (or internal) types, and they are always pointers to
a structure. The structure defines the object to be processed by the module. For example,
the memory type Cimage represents monochrome images with gray levels of (unsigned) Char
values. The memory type Curve represents a discrete curve in the plane, etc. See the Volume
two “MegaWave2 System Library” for a description of all available MegaWave2 memory types.

How do these objects live outside a module 7 They are C variables until the process finishes
: a module which calls another module just gives the objects as parameters of the function;
into the XMegaWave2 interpreter, all commands reside in memory and therefore objects remain
C variables until they are removed. When the process finishes (e.g. at the end of a module’s
command), the output objects have to be saved on disk as a file. The same problem occurs
when a process begins: input objects have to be read from files. The format of the file depends
on the memory type, we call it the MegaWave2 file (or external) type. Whereas there is
only one memory type associated to an object, a memory type may be represented on disk with
many different file types. This is because MegaWave2 recognizes several standard file formats,
especially for the images. Also see Volume two for a description of all available MegaWave2 file

types.

1.8 MegaWave2 Macros

A MegaWave2 macro is a Bourne shell script with a normalized header. It can call a set of
MegaWave2 modules (in command mode), in order to repeat a sequence of actions automatically.
It can also be a system’s macro which is an utility to manage MegaWave2.

For example, the macro cmw2 calls the MegaWave2 Compiler, the macro mwdoclatex compiles
the documentation of a module using INTEX, Please refer to Section 5 for a list of all available
system’s macros. You can get an updated list of these macros by running mwsysmaclist or
mwdoc s from the command line.

Notice that you can create your own macros (called user’s macros). You may want, for
example, to put in a macro a sequence of calls to some modules you frequently use. In the first
versions of MegaWave2, the user’s macros were put into the directory $MY_MEGAWAVE2/shell.
Since the version 1.04 of the software, user’s macros are managed in the same way as modules.

Introduction MegaWave2 User’s Guide Introduction 10

There are public user’s macros as well as private user’s macros. The public user’s macros
are put into the same directories as the sources of the public modules, that is subdirectories of
$MEGAWAVE2/src, while private user’s macros are in the subdirectories of $MY_MEGAWAVE2/src.
Please refer to Section 6 to learn more about user’s macros.

1.9 The MegaWave2 Compiler

The MegaWave2 Compiler is activated by the macro cmw2 (see description Section 5.1). Let us
suppose that you are in the directory $MY_MEGAWAVE2/src/test (i.e. the group is test) and
that you call cmw2 mod (i.e. the module is mod, coded in the file mod.c). If no error occurs,
cmw2 mod processes the following items:

e A file object is created which contains the code of the module for the architecture of the
machine; this object is added to a user library called libmymw.a.

e If cmw?2 has been called with the -X option (which means: prepare this module for XMegaWave2),
an object is created which makes an interface between the module function and XMegaWave2;
this object is added to a user library called 1ibmyxmw.a.

e A document skeleton is created in the directory MY_MEGAWAVE2/doc/obj, which has the
name mod.doc. This document will be included into the volume 3 of the MegaWave2
guides; it explains the use of the module (syntax of the command, synopsis of the function,
input /output objects, ...).

e A command is generated and compiled for the architecture of the machine. The executable
allows to run the module as a Unix command. The input/output variables of the module
are read or written using files, keyboard or screen. The command is compiled using
standard C libraries and the following libraries: mymw, sysmw, W_X11R4, mw, tiff or notiff.
They allow the module to access to functions of the System Library, of all the public
modules, of all your private modules and of the Wdevice facilities (window toolkit). If
there are shared libraries for your machine architecture, you will save a lot of disk space.

Installation MegaWave2 User’s Guide Installation 11

2 Installation

2.1 Installation of the system

This section explains how to install the MegaWave2 software on your machine, it is written for
the MegaWave2 administrator. If you are a plain user, you can skip this and go to Section 2.2.
To be the MegaWave2 administrator, you don’t need to be root (super-user)®. The administrator
has to compile the kernel and the modules, and to manage the local public version of the software;
in addition to the installation, he may update the modules library with some private modules
from the users (see Section 1.7).

2.1.1 Upgrading to a new MegaWave2 version

If a former MegaWave2 software is installed on your machine, you may upgrade to a new ver-
sion by following the same instructions as for a first installation. Old public modules will be
replaced by new ones. It is likely that you or other users would have developed private mod-
ules (i.e. modules set in $MY_MEGAWAVE2/src) that make use of older system library and older
public modules. In such a case when the new installation is finished, check if public modules
used by private modules have changed in some way (especially in the input/output parame-
ters) and modify accordingly private modules. And then, recompile all private modules (run a
cmw2_all -clear -2p -dep . under $MY_MEGAWAVE2/src). All MegaWave2 user’s should do
such a recompilation on their own private modules, even if the sources (.c files) didn’t require
any modification : from one MegaWave2 version to a new one, the kernel may change a lot and
therefore objects (such as .0 and .doc files) generated by the old kernel may not be compatible
with the new one.

2.1.2 Restoration of the package

The MegaWave2 administrator has to install the distribution package in a subdirectory of its
home directory. Let us call this subdirectory $PRIVATE_MEGAWAVE2. If needed, the administrator
may also create a directory (usually outside its home directory) where the public version of the
software will be copied. Let us call this subdirectory $PUBLIC_MEGAWAVE2.

You should begin the installation by restoring the full MegaWave2 package in $PRIVATE_MEGAWAVE2.
As you are reading this document, you probably have already completed the restoration (in that
case, you can go to the next Section 2.1.4).

If not, the best way to download the last version of the software and to get full instruc-
tions for the restoration is to visit our World Wide WEB page* on the Internet (you may
also try an anonymous ftp°, but this service is likely to be interrupted and the last version
may not be available there). The package should be in a file named MegaWave2_V<n>.tar.Z,
MegaWave2_V<n>.tar.gz or MegaWave2_V<n>.tgz, where <n> is the version number. After

31t is not a good idea to install MegaWave2 as root. If you have root privileges, you should better create a
megawave account and install the software using this account.

“http://www.cmla.ens-cachan.fr/Cmla/Megawave

Sftp://ftp.cmla.ens-cachan.fr

Installation MegaWave2 User’s Guide Installation 12

downloading it and if your WWW browser didn’t do it for you, decompress the tar file us-
ing uncompress (.Z file) or using gunzip (.gz and .tgz files), and extract the files from the
tar file using tar xf MegaWave2_V<n>.tar. If you are using the GNU tar command, you

may also handle restoration of MegaWave2_V<n>.tgz in one pass by means of the “z” flag :
tar xfz MegaWave2_V<n>.tgz.

In any case, first load the file named README and follow the instructions in it. When the
restoration will be done, you will get a main directory containing the software, with a name
referred to as $PRIVATE_MEGAWAVE2.

Please read first the additional information put in the file $PRIVATE_MEGAWAVE2/README.

If you are the administrator, you should entirely read the following sections. However, you may
try to install the software quickly by calling the shell Install located at the root directory of
the MegaWave2 package $PRIVATE_MEGAWAVE2. If your system and machine architecture is the
same as one we have, this may install the whole software without pain.

2.1.3 Directories structure

We know from Section 1.7 that modules are split between public modules put in a directory
named $MEGAWAVE2 and private modules put in $MY_MEGAWAVE2.

Actually, for the MegaWave2 administrator things are a little bit more complicated : the ad-
ministrator may want to be able to check new public modules and new kernel binaries before
making them available for plain users. Therefore, the administrator has his own $MEGAWAVE2
directory wich is not necessary the same as the $MEGAWAVE2 directory of plain users. His
own $MEGAWAVE2 directory is called private MegaWave2 (with associated environment vari-
able $PRIVATE_MEGAWAVE2) whereas the $MEGAWAVE2 directory of plain users is called public
MegaWave2 ($PUBLIC_MEGAWAVE2). Of course, if you don’t plan to update the system or if
the only user is the administrator you should set $PUBLIC_MEGAWAVE2 = $PRIVATE_MEGAWAVE2.
Notice that the administrator always has $PRIVATE_MEGAWAVE2 = $MEGAWAVE2.

2.1.4 Set up the environment

You have to set up some environment variables used by MegaWave2. Put these definitions in a
file which is executed at login time (such as .profile,.login,...) or when opening a new shell
(e.g. .cshrc). They have to be set both for the administrator account and for all user accounts.
Therefore, it may be better for the administrator to put the definitions in a file which will be
sourced at login time by all users.

The system’s macro mwsetenv helps you to generate such a file, see its description in Section 5.1.
This macro is called by the shell Install (see Sections 2.1.5 and 5.1), so if you choose to install
the software in this way you should not have to set up the environment manually.

The following variables are needed for the administrator only:

e PUBLIC_MEGAWAVE2 : directory where the public installation of the software has to be
made, usually outside the administrator home directory. You need write permission on it.

Installation MegaWave2 User’s Guide Installation 13

Figure 1: The various MegaWave2 directories a user may see.

$MY_MEGAWAVE2 (read/write) : user’s private modules
A plain user

$MEGAWAVE2 (read only)
= current public modules and kernel binaries
$PUBLIC_MEGAWAVE2 (read/write)

The administrator

$PRIVATE MEGAWAVE2 = $MEGAWAVE2 (r/w) : distribution,
future public modules, kernel binaries and sources

$MY_MEGAWAVE2 (r/w) : modules in development

Plain users need read and execute permissions, but they should not have write permission.
Example: setenv PUBLIC_MEGAWAVE2 /usr/local/share/megawave2.

e PRIVATE_MEGAWAVE2 : directory where the temporary installation of the software has to
be made (future public version), usually inside the administrator home directory. This
is also the directory where the original distribution is put. Plain users do not need any
permission on it.

Example: setenv PRIVATE_MEGAWAVE2 ${homel}/megawave2.

The following variables are needed for all users (including the administrator):

e MEGAWAVE2 : for a plain user, directory where the public installation of the software
is made (ask your administrator for it). For the MegaWave2 administrator, set it to
PRIVATE_MEGAWAVEZ2.

Example: setenv MEGAWAVE2 /usr/local/share/megawave2.

e MY_MEGAWAVE2 : directory where the private user’s version of the modules is.
Example: setenv MY_MEGAWAVE2 ${homel}/my_megawave2.

e MW_MACHINETYPE : machine architecture as returned by the macro mwarch (if the version
of this macro accepts the option -s, use it).
Example: setenv MW_MACHINETYPE ‘$MEGAWAVE2/sys/shell/mwarch -s‘. On Sun com-
puters running Solaris (SunOS 5.x or higher), you need to call mwarch with the option -s.
Otherwise, MegaWave2 will confuse the objects with those for SunOS 4.x.

Installation MegaWave2 User’s Guide Installation 14

e MW_SYSTEMTYPE : name of the operating system as HPUX, SunOS,
Example: setenv MW_SYSTEMTYPE ‘uname | tr -d -°.

Special attention is requested if the directory path put in MEGAWAVE2 or MY_MEGAWAVE2 corre-
sponds to a link or to an automounted file: you should always put the true pathname and not
the link name. In short, if you type under your shell the command cd $MEGAWAVE2 followed
by the command /bin/pwd (and not the shell built-in command pwd), you must get the same
pathname as the one put in $MEGAWAVE2.

The following variables may be needed:

e MW_INCLUDEX11 : directory where the X Window include files are, if not in /usr/include/X11.
If you are the administrator, this variable is always required.
Example: setenv MW_INCLUDEX11 /usr/include/X11R5

e MW_LIBX11 : directory where the X Window libraries are, if not in /usr/1ib/X11. If you
are the administrator, this variable is always required.
Example: setenv MW_LIBX11 /usr/1ib/X11R5.

e MW_INCLUDEXm : XMegaWave2 only. Directory where the Motif include files are, if not in
/usr/include/Xm.
Example: setenv MW_INCLUDEXm /usr/include/Motifl.2.

e MW_LIBXm: XMegaWave2 only. Directory where the Motif libraries are, if not in /usr/1ib.
Example: setenv MW_LIBXm /usr/lib/Motifl.2.

e MW_LIBTIFF : directory path where the TIFF library (libtiff) is located, if you want to use
TIFF image format.

e MW_LIBJPEG : directory path where the JPEG library (libjpeg) is located, if you want to
use JPEG image format.

e LD_LIBRARY_PATH : add directory path where the MegaWave2 system shared libraries are
located, on UNIX systems (e.g. IRIX, SUN SOLARIS, LINUX) which require this defini-
tion for their runtime linker. Example :
setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:${MEGAWAVE2}/sys/1lib/${MW_MACHINETYPE}.

e LD_RUN_PATH : add directory path where the MegaWave2 system shared libraries are lo-
cated, on UNIX systems (e.g. LINUX) which require this definition for their runtime
linker. Example :
setenv LD_RUN_PATH ${LD_RUN_PATH}:${MEGAWAVE2}/sys/1ib/${MW_MACHINETYPE}.

Note:

e The X Window system Version 11 is a priori needed only by modules which use the Wdevice
library to display signals, images, movies, ...However, it cannot be discarded since it is
required to compile the kernel.

e The Motif Window system is needed only for XMegaWave2; in that case you need also the
X Window system Version 11.

Installation MegaWave2 User’s Guide Installation 15

e IATEX is needed only to make a new documentation for the modules you are going to write.
But to read the current documentation, you need a DVI viewer. MegaWave2 assumes xdvi
(DVI Previewer for the X Window System) is installed on your system.

e The TIFF library is needed to load and save images in the TIFF format only. You may al-
ready have this library, e.g. if you use the XV software of John Bradley. If not, you can load
it by anonymous ftp at the following Internet address: sgi.com (directory graphics/tiff).

e The JPEG library is needed to load and save images in the JPEG/JFIF format, as defined
by the Independent JPEG Group. Be aware that this is a loosely image format.

Last, you need to update your path variable in order to allow execution of the MegaWave2
commands from any location. Add the following paths (the first one should have greatest
priority): ${MY_MEGAWAVE2}/shell, ${MY_MEGAWAVE2}/bin/${MW_MACHINETYPE},
${MEGAWAVE2}/sys/bin/${MW_MACHINETYPE}, ${MEGAWAVE2}/sys/shell,
${MEGAWAVE2}/bin/${MW_MACHINETYPE}.

Example:

set path=(${MEGAWAVE2}/sys/bin/${MW_MACHINETYPE} ${MEGAWAVE2}/sys/shell ...
${MEGAWAVE2}/bin/${MW_MACHINETYPE} $path)
set path=(${MY_MEGAWAVE2}/shell ${MY_MEGAWAVE2}/bin/${MW_MACHINETYPE} $path)

2.1.5 Make the software ready

The simplest way to install the software is to call the shell Install located at the root directory
of the MegaWave2 package $PRIVATE_MEGAWAVE2, and to answer some questions. Actually, this
shell simply calls the macro mwinstall with parameters depending on your answers (see the
description of this system macro in Section 5.1). If mwinstall successfully exits, you should not
have to do anything else to install the software but to include the environment file generated by
mwsetenv in your .profile or .cshrc.

If your system is the same as one we have, the installation procedure should be straightforward.
If not or if something goes wrong during the installation procedure, you will have to compile the
whole thing manually. The following explains the main steps you should manually complete.
You may also have a look on the installation shells, such as Install and mwinstall, for a
better understanding of what has to be done. Once the environment variables are set (see
Section 2.1.4), you should try to compile the kernel first, and the modules and user’s macros
afterwards.

The kernel, that is to say the system functions and the MegaWave2 preprocessor, is no longer
pre-compiled on MegaWave2 versions 2.x. You may compile it for your system architecture using
the shell $PRIVATE_MEGAWAVE2/kernel/Install.

The software contains the modules as source files (located in the directory $MEGAWAVE2/src), so
they have to be compiled for your machine architecture. Just type cmw2_all $MEGAWAVE2/src
to compile all the modules located in the subdirectories of $MEGAWAVE2/src. If your system can
run the compiler, you probably won’t encounter a lot of errors at this time. Most likely errors
are those about standard libraries or include files not found: check the environment setup or

Installation MegaWave2 User’s Guide Installation 16

the installation of your operating system. If you get an error about an unsatisfied symbol while
compiling a module A, it is probably because A calls a module B which has not been already
compiled. To fix that, you may type cmw2_all $MEGAWAVE2/src one more time or, preferably,
use the option -2p (two pass - does not work for all linkers, see Section 5).

2.1.6 No longer registration, but still license

When the modules are compiled, you may want to check some algorithms. Just type from your
Shell the name of the module you want to run: MegaWave2 recalls you the parameters needed
to execute the corresponding algorithm. Please refer to the Volume three: “MegaWave2 User’s
Modules Library” to learn more about the different modules. You may also run the system’s
macro mwdoc M to get the list of available modules and user’s macros, together with a short
description.

On MegaWave2 versions 1.x you had noticed that some input and output data were disturbed.
This is because you had to register the copy of MegaWave2 you got in order to use it freely.
This is no longer the case on MegaWave2 version 2.x.

However, the use of MegaWave2 is still under a license. By using it, you accept the terms of
this license. You will find the license text at Section 8.1 page 79. If you do not agree with these
conditions, you have to remove all the MegaWave2 files in your possession. Otherwise, your
copy may be declared illegal regarding the european laws.

2.2 Installation for the user

This section explains what each user must do in order to run the software. It includes the
MegaWave2 administrator which may also want to use the software as a plain user.

If you were using an older MegaWave2 software, you will have to recompile all private modules
after the new software will be installed : check if some of your private modules need to be
upgraded and run a cmw2_all -clear -2p -dep . under $MY_MEGAWAVE2/src. You have to
redo all compilations even if your private modules didn’t require any modification : from one
MegaWave2 version to a new one, the kernel may change a lot and therefore objects (such as .o
and .doc files) generated by the old kernel may not be compatible with the new one.

2.2.1 Set up the environment

The user may have to set up some variables of the environment. Two cases may be encountered:
if the MegaWave2 administrator has put the definitions in a specific file (this is automatically
done if he has used the standard installation procedure), you just have to load this file at login
time or when opening a new shell (by using the shell command source or the . - dot -). Ask the
local administrator about this possibility. If there is no such a file, you have to set the variables
in your own configuration file as explained at Section 2.1.4 page 12.

In addition to the standard environment setup, you may want to define the following variables

e MW_STDOUT, MW_STDERR

Installation MegaWave2 User’s Guide Installation 17

If you type under your C-compatible shell setenv MW_STDOUT /dev/null, you ask the
system to redirect the standard output of all modules to the null device that is, to the trash.
Make the experience by calling a run-time module which usually prints a lot of messages...
No more messages will disturb your terminal ! But you have lost the messages. If you want
to get them in a file (let us call output its name), type setenv MW_STDOUT output. You
can reset the default prints by removing your definition: unsetenv MW_STDOUT. You can
also redirect the standard error by setting the variable MW_STDERR. We do not recommend
you to redirect this output to the trash, since you won’t be able to know if your modules
correctly exit.

e MW_CHECK_HIDDEN

If this variable is set, each time a module is called a check is performed using the system’s
macro mwwhere to see if the called module does not hide another one of same name. Indeed,
path for private modules is set before path for public modules in the PATH variable (and
the same rule applies for module’s library at link time). So, if you write a user’s module
called foo while a foo public module already exists, the public module will be hidden by
the first one. In such a case and providing MW_CHECK_HIDDEN is set, a warning message
will be issued by the non-hidden module at running-time. The same procedure applies to
macro, to check if a private user’s macro hides a public one. However, for macros the check
is performed when the header/usage text is output only (e.g. when calling the macro with
-help or with an invalid syntax).

2.2.2 Make the directory tree ready

An user may want to develop new modules. In this case, he writes its private modules into a
local MegaWave2 directory called $MY_MEGAWAVE2. This directory should contain several sub-
directories although some of them are optional:

e src : sources of the user’s modules and macros. May be divided into subdirectories
representing groups.

e bin : executable modules. You have one subdirectory per machine architecture on which
you have compiled the modules.

e 1ib : user’s library of modules. You have one subdirectory per machine architecture on
which you have compiled the modules.

e obj : object files. You have one subdirectory per machine architecture on which you have
compiled the modules.

e doc : documentation. May be divided into src (source) and obj (object) subdirectories.

e data : samples of MegaWave2 data files such as images, movies, filters, shapes. May be
divided into subdirectories representing groups or whatever else.

e shell : links to the user’s macros (Bourne shell scripts).

e mwi : usage interface for the interpreter (XMegaWave2).

Installation MegaWave2 User’s Guide Installation 18

e tmp : directory for temporary files.

You should only focus on the directories src, doc/src and maybe data (the last one being
optional), where you will have to write something. Other directories will be automatically
updated by the system.

Subdirectories of these directories will be automatically created when necessary (except groups
into src, see Section 1.7 page 7). But the directories themselves have to be created before the
first call to the MegaWave2 compiler. You can make them manually, or you can call the macro
mwnewuser.

Getting started MegaWave2 User’s Guide Getting started 19

3 Getting started

This section shows you how to write a MegaWave2 module, by explaining several examples. If
you want to run existing modules only, please refer to the Volume three: “MegaWave2 User’s
Modules Library” to learn more about the different modules.

3.1 A simple module

Let us suppose that you want to write an algorithm which adds the content of two monochrome
images, that is to say it adds pixel by pixel the gray level values.

The first question you should ask yourself is “what should be the input and the output of
this algorithm ?”. Obviously you need two images for the input and the output will be another
image, which will support the result of the addition. If you refer to the Volume two: “MegaWave2
System Library”, you will see that monochrome images may be implemented by two MegaWave2
objects: the memory type Cimage and the memory type Fimage. The first one uses small integers
for the gray levels (unsigned char) while the second one uses floating point representation. Let
us say that your algorithm will make additions using the floating point representation: this is
the less restrictive choice since integers are reals (and reals are not integers !) and the addition
of two integers may exceed the capacity of the unsigned char representation (255).

Other important questions are “what name should I give to the module 77, “what group should
it belong to?”. Due to the limitation of some standard link editors and archives, we recommend
you choose short names (with no more than 11 characters). One uses to begin the name with a
letter which recalls the memory type of the input: here it will be £ since we use Fimage. The
remainder should be chosen in order to recall the algorithm, here add1 for example (the letter
1 means that variants will be presented). You may also want to put the module in a group, let
us say demo.

At this point, we have all the information to write the MegaWave2 header (please have a look
at the listing page 21):

e the line /* mwcommand tells the MegaWave2 compiler that you begin the header. It is
enclosed by comments (/* ...*/) since standard C compilers must be able to compile a
module.

e the line name = {fadd1}; defines the name of the module to be faddl. Although this
event is not reported as an error, this name must coincide with the name of the module
file and with the name of the main function of the module.

e the line author = {"My name"}; gives the name of the author(s). It will be used for
copyrights.

e the line labo = {"My labo with the address"} reports the laboratory(ies) where the
author(s) belong(s). It will be used for copyrights (this definition is optional. If not set,
native laboratory is assumed).

e theline version = {"1.0"}; indicates the version number of the algorithm (this definition
is optional).

Getting started MegaWave2 User’s Guide Getting started 20

e the line function = {"Adds the ... "}; explains (very) shortly the algorithm.
e Last, the more important field is the usage. Here,

— fimagel->A means that A is an input parameter of the function fadd1 (whose type
—here Fimage— is given by the C declaration). The word fimage1l is the one which
will appear in the help and in the documentation (instead of the C word A). The
string following this declaration explains shortly the meaning of this argument.

— fimage2->B means that B is also an input parameter of the function.

— result<-C means that C is an output parameter of the function.

To be in concordance with this header, you must edit the module in a file called fadd1l.c into
the directory $MY_MEGAWAVE2/src/examples. This module is actually given with the standard
distribution and it is located in $MEGAWAVE2/src/examples. So you can avoid editing it by
copying it on your home location $MY_MEGAWAVE2/src/examples.

After the MegaWave2 header comes the regular C body. You must first include the needed
standard C files (here stdio.h) followed by the MegaWave2 include file (mw.h).

The declaration of the main function (fadd1l) must list all the parameters (and no others)
put in the usage part of the header: you recognize the three parameters A,B,C. The body of
this function uses several functions of the system library (all functions of the system library
begin with the prefix mw). Please see the Volume two: “MegaWave2 System Library” to get
explanations about all these functions.

The instructions

if ((A->nrow '= B->nrow) || (A->ncol != B->ncol))
mwerror (FATAL, 1, "The input images have not the same size!\n");

check that the sizes of the two input images A and B are the same, that is, that they have the
same number of rows and columns. If not, a fatal error is sent, which terminates the module.

The line

if ((C = mw_change_fimage(C,A->nrow,A->ncol)) == NULL)
mwerror (FATAL, 1, "Not enough memory !\n");

allocates memory for the output image C, if C does not have enough memory to record a size of
(A->nrow,A->ncol). Indeed, when you write a module, you don’t know in which context the
module may be executed: It can be run in the command mode, in which case no memory is
allocated for C (but the C structure by itself) or it can be run as a function in memory (e.g.
call from another module, from an interpreter, ...) in which case C may have been previously
allocated.

The loop

for (x=0;x<A->ncol;x++) for (y=0;y<A->nrow;y++)

{

Getting started MegaWave2 User’s Guide Getting started 21

a = mw_getdot_fimage(A,x,y);
b = mw_getdot_fimage(B,x,y);
mw_plot_fimage(C,x,y,a+b);

}

is the main part of the algorithm: for each pixel (z,y), we get in a the gray level of the image
A and in b the gray level of the image B . The last instruction makes the addition a+b and put
the result in the image C.

We show in the following the whole listing of the simple module called fadd1i:

/* mwcommand

name = {faddil};

author = {"My name"};

labo = {"My labo with the address"};

version = {"1.0"};

function = {"Adds the pixel’s gray-levels of two fimages (for demo #1)"};
usage = {

fimagel->A
"Input fimage #1",
fimage2->B
"Input fimage #2",
result<-C
"Output image"
};
*/
[*/

#include <stdio.h>
#include "mw.h"

void faddi(A,B,C)
Fimage A,B,C;

{ int x,y;
float a,b;

if ((A->nrow != B->nrow) || (A->ncol != B->ncol))
mwerror (FATAL, 1, "The input images have not the same size!\n");

if ((C = mw_change_fimage(C,A->nrow,A->ncol)) == NULL)
mwerror (FATAL, 1, "Not enough memory !\n");

for (x=0;x<A->ncol;x++) for (y=0;y<A->nrow;y++)
{
a = mw_getdot_fimage(A,x,y);
b = mw_getdot_fimage(B,x,y);
mw_plot_fimage(C,x,y,at+b);

Getting started MegaWave2 User’s Guide Getting started 22

You are now ready to compile the module: type under your favorite shell the command:

cmw2 faddil

This assumes that you have a standard C compiler called cc. If your prefer to use the GNU C
compiler, type the command:

cmw2 -gnu faddl

You should get something like the following prints:

cmw2 faddl
>>> Welcome on the MegaWave2 Compiler V1.18 <<<

Phase 1 : MegaWave2 preprocessor
faddl.c :
done.
Phase 2 : production of sources and objects
production of document squeleton (doc/demo/faddl.doc)
production of arguments analyser object
production of module object
add objects to MegaWave2 user library
production of interface with MegaWave2 interpretor source
production of interface with MegaWave2 library object
Phase 3 : production of MegaWave command
linking MegaWave2 command "faddl" on hp
(New command added... Type rehash)

A lot of errors may occur during this compilation if your installation is not ready. In that case,
please check the installation (see section 2).

If you didn’t get any errors, type rehash if you are using a C-shell and execute the module in
the command mode by typing fadd1 first without parameters. You should get something like:

A\ // Adds the pixel’s gray-levels of two fimages (for demo #1).
N\ /Y
fadd1 Copyright (C)1998 Jacques Froment.
// \\ MegaWave2 : J.Froment (C)1988-98 CEREMADE, Univ. Paris-Dauphine
//V 1.0\\ and (C)1998-2002 CMLA, ENS Cachan, 94235 Cachan cedex, France.

error : missing ’fimagel’

usage : faddl fimagel fimage2 result

fimagel : Input fimage #1
fimage2 : Input fimage #2
result : Output image

This print recalls you the syntax of the command. Since you run the module in the command
mode, the parameters associated to a MegaWave2 type (fimagel fimage2 result) refer to file

Getting started MegaWave2 User’s Guide Getting started 23

names. If you have some favorite image files available, use them for the two requested inputs
fimagel fimage2. If not (or if MegaWave2 cannot read those file formats), type the line:
faddl fimage cimage result

How MegaWave2 does access to the files fimage and cimage ? If a file is not found in the given
path and name (here ./fimage and ./cimage), MegaWave2 tries to resolve the name by reading
the directories $MY_MEGAWAVE2/data and $MEGAWAVE2/data and their subdirectories. For each
MegaWave2 internal type, we put in those directories examples of external types. The name of
the file corresponds to the name of the internal type: for example, the file
$MEGAWAVE2/data/PUBLIC/cimage contains a monochrome image where the gray levels were
recorded using the unsigned char representation, that is the representation of the Cimage inter-
nal type. You can display this image on your screen by calling the following public module:
cview cimage

You may have noticed that we called fadd1 with a parameter (cimage) which does not match the
requested internal type for the C variable B (a Fimage). It doesn’t matter since the MegaWave2
library makes the right conversion. It is also possible to convert a Fimage into a Cimage although
is this case information may be lost. Of course some conversions are not supported (e.g. you
cannot call fadd1 with a signal as parameter). Please refer to Volume two: “MegaWave2 System
Library” to learn more about that.

After the command faddl fimage cimage result has been run, you should get on disk the
new file ./result which records the contents of the C variable C. You can display it on the
screen by typing:

cview result

You may get a warning message like

MegaWave warning (cview) : 27757 Gray levels were out of [0,255].

This is because cview takes a Cimage as the input, so the gray levels of result out of 255 have
been thresholded.

Because C is a Fimage, the file . /result has a compatible format with the floating point repre-
sentation. By default, MegaWave2 uses the same format as the format of the input fimage but
you can choice the format you want by using the option -ftype. Indeed, there are some options
in addition to the options you can define in the usage. Such options are called system’s options
and one can distinguish them from user’s options since they use more than one letter (see sec-
tion 4.8 page 43 for more details). For example, faddl -ftype IMG fimage cimage result2
creates a file result2 which has the external format IMG. This file format uses the unsigned
char representation, therefore you get this warning during the execution of faddi:

MegaWave warning (faddl) : 27757 Gray levels were out of [0,255].

But now if you call cview result2, no more warning appears since thresholding has been done
by fadd1.

If you want to print the output image on a PostScript printer, you should use the external
format PS instead of IMG: the file result2 will contain the image following PostScript format,
so you can print it using the command 1p result2 (on most Unix systems). If you don’t want
to print result2 alone, e.g. if you want to include this file as an image in a IATEX document,
you should use the EPSF format instead of PS.

Getting started MegaWave2 User’s Guide Getting started 24

3.2 Some optimizations

The main part of the algorithm in faddl uses standard MegaWave2 functions to access to
the pixels. Since fast pixel access is critical for image processing, we give in this section two
alternatives to speed the execution of the module. You may find more tips in the Volume two:
“MegaWave2 System Library”, at this time keep just in mind that this kind of optimization can
be adapted to other memory types such signals or movies.

The first alternative is given by the module fadd2. Here is the listing:

/* mwcommand
name = {fadd2};
author = {"Jacques Froment"};
version = {"1.0"};
function = {"Adds the pixel’s gray-levels of two fimages (for demo #2)"};
usage = {
fimagel->A
"Input fimage #1",
fimage2->B
"Input fimage #2",
result<-C
"Qutput image"

#include <stdio.h>
#include "mw.h"

#define _(a,i,j) ((a)->gray[(j)*(a)->ncol+(i)])
void fadd2(A,B,C)

Fimage A,B,C;

{ int x,y;

if ((A->nrow != B->nrow) || (A->ncol !'= B->ncol))
mwerror (FATAL, 1, "The input images have not the same size!\n");

if ((C = mw_change_fimage(C,A->nrow,A->ncol)) == NULL)
mwerror (FATAL, 1, "Not enough memory !\n");

for (x=0;x<A->ncol;x++) for (y=0;y<A->nrow;y++)
~(C,x,y) = _(A,x,y) + _(B,x,y);

This module does not really optimize the speed of the execution (the saving is small) but it
makes the listing more readable for people: once you have defined the C macro _(a,i,j), you
can access to the pixel (z,y) on an image I by writing _(I,x,y) only. But be aware that some

Getting started MegaWave2 User’s Guide Getting started 25

checking are deconnected in this way: do not exceed the maximum range for (z,y).

The second alternative is given by the module fadd3. This one really improves the speed of the
execution. But and unlike the former example, it cannot be used in all algorithms: the pixel
cannot be addressed in random order. The image has to be read (or written) in the “natural”
order that is, from up to down and left to right. Here is the listing:

/* mwcommand
name = {fadd3};
author = {"Jacques Froment"};
version = {"1.0"};
function = {"Adds the pixel’s gray-levels of two fimages (demo #3)"};
usage = {
fimagel->A
"Input fimage #1",
fimage2->B
"Input fimage #2",
result<-C
"OQutput image"

#include <stdio.h>
#include '"mw.h"

void fadd3(A,B,C)
Fimage A,B,C;

{
register float *ptrl,*ptr2,*ptr3;
register int i;

if ((A->nrow != B->nrow) || (A->ncol !'= B->ncol))
mwerror (FATAL, 1, "The input images have not the same size!\n");

if ((C = mw_change_fimage(C,A->nrow,A->ncol)) == NULL)
mwerror (FATAL, 1, "Not enough memory !\n");

for (ptri=A->gray, ptr2=B->gray, ptr3=C->gray, i=0;
i < A->nrow*A->ncol; ptril++, ptr2++, ptr3++, i++)
*ptr3 = *ptrl + *ptr2;

The third alternative is given by the module fadd4. The speed of the execution for this module
is not so fast that the one for the previous module fadd3, but this last method can be used in any
algorithms, even if the pixels are not scanned in the “natural” order. This method consists to
allocate, using a MegaWave2 function, a bi-dimensional tab which is actually an one-dimensional
tab of pointers, and each pointer points to the beginning of a image’s line. Here is the listing:

Getting started MegaWave2 User’s Guide Getting started 26

/* mwcommand

name = {fadd4};

author = {"Jacques Froment"};

version = {"1.0"};

function = {"Adds the pixel’s gray-levels of two fimages (for demo #4)"};
usage = {

fimagel->A
"Input fimage #1",
fimage2->B
"Input fimage #2",
result<-C
"Output image"
};
*/
Y et et e */

#include <stdio.h>
#include "mw.h"

void fadd4(A,B,C)
Fimage A,B,C;

{ int x,y;
float **TA,**TB,**TC;

if ((A->nrow '= B->nrow) || (A->ncol '= B->ncol))
mwerror (FATAL, 1, "The input images have not the same size!\n");

if ((C = mw_change_fimage(C,A->nrow,A->ncol)) == NULL)
mwerror (FATAL, 1, "Not enough memory !\n");

if (((TA = mw_newtab_gray_fimage(A)) == NULL) ||
((TB = mw_newtab_gray_fimage(B)) == NULL) ||
((TC = mw_newtab_gray_fimage(C)) == NULL))

mwerror (FATAL, 1, "Not enough memory !\n");

for (x=0;x<A->ncol;x++) for (y=0;y<A->nrow;y++)
TC[yl [x] = TAlyl[x] + TBly] [x];

free(TC);

free(TB);
free(TA);

3.3 A little more complex extension

We give in this section a little more complex extension to our algorithm, in order to show the
easy way in which two modules can communicate. This will also gives examples of the use of

Getting started MegaWave2 User’s Guide Getting started 27

options in the usage.

You have seen in section 3.1 that the addition of two floating point images may be source of
errors when the resulting image has to be converted to the unsigned char representation (which
may be necessary, for example, when the image has to be displayed). You may want to control
the conversion into the addition module. Let us suppose that you want to put an optional
thresholding of the output image, which may be preceded by a normalization of the gray levels
into a given interval [min, max].

You have to add in the new module inputs for the boundaries of the interval, and input for a flag
to say whether or not you want the normalization. You have therefore to familiarize yourself
with the options.

There is a general rule about the input/output optional parameters of the module function: they
have to be pointers. If the pointer is NULL it means that the parameter has not been selected,
if the address is not equal to NULL it points to an allocated space which may be a scalar or a
C structure (in case of MegaWave2 memory type). Because all MegaWave2 memory types (e.g.
Cimage, Fimage, ...) are pointers to a structure, there is no difference in the type between
an optional parameter and a needed parameter. On the contrary, if the input/output optional
parameter is a scalar, say a float, it has to be defined has a pointer to a float (float *).

A flag is nothing more than a pointer to any scalar, e.g. a char *. In the following version of
our module, called fadd, the flag norm indicates if the normalization has to be computed (see
the listing page 28) :

’n’->norm "Normalize pixel values into [min,max]"+

The letter >n’ means that, in the command mode, the flag is set when the module is called with
the user option -n.

The other options are about the boundaries, let have a look to the first one:

’m’ :min->m0 "Force minimal pixel value",

There is here an additional term, min, which says that the option needs a value when it is
selected. This value is put into the C variable addressed by m0. The word min is the one which
will appear in the help and in the documentation, instead of the name of the C variable (you
can choice the same name). The string following this declaration explains the meaning of the
option. Everything is similar for the second boundary option:

’M’ :max->ml "Force maximal pixel value",

You have of course to update the declaration of the module function, in order to add the options:
void fadd(A,B,C,norm,mO,ml)

Fimage A,B,C;

char *norm;
float *mO,*mil;

Getting started MegaWave2 User’s Guide Getting started 28

When the -n option is not selected, it should be possible to give only one boundary of the
interval [min, max|. Indeed, the threshold may be done only in one side. But when the user
ask for the normalization, both -m and -M options must be selected. So you need to check that
somewhere. It is not possible to put this information in the header (we could do that but the
header’s grammar would be horrible), but you can add the verification in the beginning of the
function:

if (norm && ('mO || 'ml)) mwerror (USAGE,O,
"Normalization needs selection of [min,max] values\n");

We call the function mwerror with the argument USAGE to tell MegaWave2 that this error is
about the usage.

The normalization and thresholding process is called by the last line:
if (m0 || m1) fthre(C,C,norm,m0,ml);

Where is the function fthre defined ? Since it is not a function of the system library (it doesn’t
begin with mw), and because this function is not defined in the module, it should be the main
function of another module. We could have put the computations into fadd, but by creating
another module we offer the possibility to directly use the command fthre in other contexts.
In addition, other modules may want to make normalization or thresholding so the code will
not be duplicated. Such a (well-known) “philosophy of overlapped black boxes” saves space and
time, it is one of the important aspect of MegaWave2: if your mathematical algorithm may be
decomposed into several independant algorithms, write one module per algorithm.

Now we rapidly study the module fthre. You should refer to the listing page 29. The header of
fthre is copied from the one of fadd, but there is only one input image instead of two. Please
notice that the output image (the C variable B) is a priori not the same as the input image A.
This allows to call fthre from a module which needs to keep the original image. But you can
force fthre to use the same variable for the input and the output, by calling it with twice the
same variable: that is what we do in fadd. In this way, you save memory since the instruction

if ((B = mw_change_fimage(B,A->nrow,A->ncol)) == NULL)
mwerror (FATAL, 1, "Not enough memory !\n");

won’t allocate any memory (A = B and therefore B has the gray plane already allocated for the
requested size).

Here is the listing of the addition module fadd. It is a public module put into the group
common/float_image:

/* mwcommand

name = {fadd};

author = {"Jacques Froment"};

version = {"1.0"};

function = {"Adds the pixel’s gray-levels of two fimages"};
usage = {

Getting started MegaWave2 User’s Guide Getting started

’n’->norm "Normalize pixel values into [min,max]",
’m’ :min->m0 "Force minimal pixel value",
’M’:max->ml1 "Force maximal pixel value",
fimagel->A

"Input fimage #1",
fimage2->B

"Input fimage #2",
result<-C

"Output image"

#include <stdio.h>
#include "mw.h"

void fadd(A,B,C,norm,m0,m1)

Fimage A,B,C;
char *norm;
float *mO,*ml;

{
register float *ptrl,*ptr2,*ptr3;
register int i;

if (norm && ('m0 || 'm1)) mwerror (USAGE,O,
"Normalization needs selection of [min,max] values\n");

if ((A->nrow !'= B->nrow) || (A->ncol '= B->ncol))
mwerror (FATAL, 1, "The input images have not the same size!\n");

if ((C = mw_change_fimage(C,A->nrow,A->ncol)) == NULL)
mwerror (FATAL, 1, "Not enough memory !\n");

for (ptri=A->gray, ptr2=B->gray, ptr3=C->gray, i=0;
i < A->nrow*A->ncol; ptrilt++, ptr2++, ptr3++, i++)

*ptr3 = *ptrl + *ptr2;

if (mO0 || ml1) fthre(C,C,norm,m0O,ml);

29

Here is the listing of the threshold module fthre. It is a public module put into the group

common/float_image:

Sttt MegaWave2 module -—-—---————-—-——————————————o
/* mwcommand

name = {fthre};

author = {"Jacques Froment"};

version = {"1.0"};

function = {"Threshold the pixel’s gray-levels of a fimage"};

Getting started MegaWave2 User’s Guide Getting started 30

usage = {

‘n’->norm "Normalize pixel values into [min,max]",
’m’ :min->m0 "Force minimal pixel value",

’M’:max->ml1 "Force maximal pixel value",

fimage->A "Input fimage",

result<-B "Output image"

+;

*/

[e e */

#include <stdio.h>
#include <math.h>
#include "mw.h"

void fthre(A,B,norm,m0,m1)

Fimage A,B;
char *norm;
float *mO,*ml;

{
register float *ptr;
register int i;
float min,max,a,b;

if ('m0 && !ml1) mwerror (USAGE,0,"At least min or max pixel value requested\n");
if (norm && ('m0 || 'm1)) mwerror (USAGE,O,"Normalization needs selection of [min,max] values\n");
if (mO && ml &% (*ml <= *m0)) mwerror(USAGE,0,"Illegal values of [min,max]\n");

if ((B = mw_change_fimage(B,A->nrow,A->ncol)) == NULL)
mwerror (FATAL, 1, "Not enough memory !\n");

mw_copy_fimage(A,B); /* Copy pixel values of A into B */

if (norm) /* Normalization */
{
min=1e20; max=-min;
for (ptr=B->gray, i=0; i < B->nrow*B->ncol; ptr++, i++)
{
if (*ptr < min) min=*ptr;
if (*ptr > max) max=*ptr;
}
if (fabs((double) max-min) <= 1e-20)
mwerror (FATAL, 1, "Cannot normalize: constant input image\n");
a = (*xm1-*m0)/(max-min) ;
b = *m0 - a * min;
for (ptr=B->gray, i=0; 1 < B->nrow*B->ncol; ptr++, i++)
*ptr = a * *ptr + b;

3

/* Thresholding */
if (m0) for (ptr=B->gray, i=0; i < B->nrow*B->ncol; ptr++, i++)

Getting started MegaWave2 User’s Guide Getting started 31

if (*ptr < *m0) *ptr=+m0;
if (m1) for (ptr=B->gray, i=0; i < B->nrow*B->ncol; ptr++, i++)
if (*ptr > *ml) *ptr=*ml;

In order to make a run-time executable for the module fadd, you have to take the following
precaution: when you want to compile a module X (here fadd) which call the function of another
module Y (here fthre), be sure to compile Y before X. If you don’t, you may get this kind of
message during the compilation of X:

Phase 3 : production of MegaWave command
linking MegaWave2 command "X" on hp
/bin/1d: Unsatisfied symbols:
Y (code)
Error : exit.

There is an eviler possibility: if you change the content of the module Y, think to recompile X
after Y (no message will be displayed if you forget that). Therefore, a good habit is to recompile
all your modules from time to time (use the macro cmw2_all for that). You may also use the
Unix make utility.

Module’s header MegaWave2 User’s Guide Module’s header 32

4 Module’s header

4.1 Syntax

Any module begins with a MegaWave2 header. Such header is a set of statements enclosed
between /* mwcommand and */.

There are some restrictions :

e no C code nor C preprocessor instructions (#include, #define, ...) must be present
before the MegaWave2 header,

e no C comments inside the MegaWave2 header.
The following sections describes the statements which are used in the MegaWave2 header.
Needed statements are :

e name,

e author,

e function,

e usage,

e version.

Optional statements are :

e labo,

e group.

4.1.1 Name Statement

Syntax : name = {C_name};

Description : gives the name of the C module and the name of the run-time command; C_name
must follow the C identifier syntax. The file name of the module must be the same, but it is
followed by the extension .c.

Example : name = {bigtest};

4.1.2 Author Statement

Syntax : author = { "author name, author name , ... "};

Description : sets the list of author names; each author name must be separated by a comma.
These list (not the author name) is enclosed between quotes; it is used to insert copyright in the
run-time command and in the module documentation.

Example : author = {"A.Turing, J. Von Neumann"};

Module’s header MegaWave2 User’s Guide Module’s header 33

4.1.3 Function Statement

Syntax : function = { "sentence"};

Description : Explains shortly the function of the module; this statement contains one string
enclosed between quote. It is used every time a short help is requested.

Example : function = { "Return 1 if a MegaWave2 module is useful, O elsewhere" };

4.1.4 Labo Statement

Syntax : labo = { "Laboratory name and address "};

Description : sets the name of the laboratory (or firm) from which the authors are issued,
followed by the address. This statement contains one string enclosed between quote. Several
laboratories may be put in the same string. This string is used to insert copyright in the run-time
command and in the module documentation.

Example : labo = { "Babbage Inc. 2001 W 99th St. NY New York 10021, USA"};

This statement is an optional statement. If not set, a default laboratory is used for the copyright
(the one from which MegaWave2 is issued).

4.1.5 Group Statement

Syntax : group = { " group name "};

Description : sets the group name in which the module belongs; a group is a word that follows
UNIX file naming syntax (including an optional path).

Example : group = {"autoref/tests"}; Here, tests is a subgroup included in the main
group autoref.

This statement is an optional statement. If not set, the default group is given by the location of
the module file into the directory $MY_MEGAWAVE2/src. If set, it must match this location. Since
MegaWave2 versions 2.x, use of this statement is no more recommended. It is still available for
backward compatibility only.

4.1.6 Version Statement

Syntax : version = { " version "};

Description : sets the version of the module. Each time you modify the module file you should
increment this number.

Example : version = { "1.00"};

Since MegaWave2 versions 2.x, this statement is no more optional.

Module’s header MegaWave2 User’s Guide Module’s header 34

4.1.7 Usage Statement

Syntax : usage = { wusage specification list };

Description : describes the module interface for a call by the run-time command. An usage
specification is made by an argument declaration followed by space and a quoted string; the
quoted string is a description of the corresponding argument. The usage specifications are
separated by a comma. Therefore, an extended description of the syntax may be:

usage = { arg_1 "string_ 1",
arg_2 "string 2",

arg_n "string n"

s
There are five types of argument declaration:

1. options : they are optional parameters, which are selected by putting in the command
line a - followed by any printable character (but 7). These character defines the option.
Unix uses such options for its commands, as the option -a (list all entries) of the command
1s. Options are always placed before needed arguments.

2. needed arguments : they are needed parameters, as the Unix command write has a
needed arguments (which is a user name). Any module must define at least one needed
argument.

3. optional arguments : it is a list of parameters which is used entirely or is not used at
all (you cannot use some of the arguments of this list and don’t use the others); this list
is put between { and } and is always placed after needed arguments.

4. variable argument : this argument corresponds to a list of undefined length, the module
loops on all arguments of the list; it is always placed after needed arguments; You cannot
define for the same module optional and variable arguments.

5. unused arguments : this list describes the parameters of the module function which are
not used as arguments in the command mode. This list should be put at the end of the
declaration.

The corresponding C variables (which are defined in the module function) can be of scalar type
(short, int, long, unsigned short, unsigned int, unsigned long, float, double) or of
MegaWave2 type (a pointer to a structure, see the Volume two: “MegaWave2 System Library”
for a list of all available MegaWave2 types).

The common description for the usage specification is the following: H name => or <-= C name.
The right arrow -> describes an input flow and the left arrow <- describes an output flow.

The word H name contains the name of the argument which is used by Human being (e.g. used
in the help, in the documentation) The word C name contains the name of the C variable used
in the module body. One can choice to give to H name and C name the same word.

Module’s header MegaWave2 User’s Guide Module’s header 35

The syntax for each type of argument declaration is described in the next sections 4.2 to 4.6.
We write by H_id any word of type H name and by C_id any word of type C name.

4.2 Options

’c’—>C_id

(where ¢’ is a character) defines a flag option (i.e. an option without value); C_id is a C variable
of type pointer to a scalar (e.g. char *). The flag has been set by the user if and only if C_id #
NULL.

’¢’:H_id —>C_id

(where ¢’ is a character) defines an option with input value. The flag has been set by the user if
and only if C_id # NULL. If C_id # NULL, the value of the option is given by *C_id. C_id is a C
variable of type pointer to a scalar (e.g. char *), in this case its value is defined in the command
line by writting the number (or character) on the terminal, or a C variable of MegaWave2 type
(e.g. Cmovie), in this case its value is given by writting the file name on the terminal.

'c’:[H.id = Val]—>C_id

defines an option with default input value. This case is similar to the former, but when the option
is not set by the user then *C_id= Val that is, one can never have C_id = NULL. MegaWave2
types are not allowed. Val must be a constant of same type than C_id. Warning: no implicit
conversions are made (e.g. if C_id is of type float, Val = 1.0 is allowed but not Val = 1).

’c¢’:H.id —>C_id [Min,Max]
defines an option with input value and with interval checking (an error is send if the input value

does not fit into the given interval [Min,Max]). MegaWave2 types are not allowed. Min and Max
must be constant of same type than C_id with Max > Min.

’c’:[H.id = Val] —>C_id [Min,Max]

defines an option with default input value and with interval checking.

’¢H_id < —C_id

(where ¢’ is a character) defines an option with output value. The flag has been set by the user
if and only if C_id # NULL. If C_id # NULL, MegaWave2 writes the output value at the end of the
module from the content of *C_id. C_id is a C variable of type pointer to a scalar (e.g. char *)
or a C variable of MegaWave2 type (e.g. Cmovie). In this last case and if C_id # NULL, you
must allocate the structure to the right size using functions of the system library, before doing
any computation with this variable (see Volume two: “MegaWave2 System Library”).

Restriction: C_id cannot be a function (return value of the module), whereas this is allowed
with needed arguments (see section 4.3).

Module’s header MegaWave2 User’s Guide Module’s header 36

4.3 Needed arguments

H.id —>C_id

defines a needed argument with input value. C_id is a C variable of scalar type (e.g. char),
in this case its value is defined in the command line by writting the number (or character) on
the terminal, or a C variable of MegaWave2 type (e.g. Cmovie), in this case its value is given
by writting the file name on the terminal. In the body of the module function, you are sure to
be able to access to the content of this variable. Do not perform any deallocation on it, since
MegaWave2 may try to access it after the end of the module.

Hid —>C_id[Min,Max]

defines a needed argument with input value and with interval checking (an error is send if the
input value does not fit into the given interval [Min,Max]). MegaWave2 types are not allowed.
Min and Max must be constant of same type than C_id with Max > Min.

H.id <—-C_id

defines a needed argument with output value. C_id is a C variable of type pointer to a scalar
(e.g. char *) or a C variable of MegaWave2 type (e.g. Cmovie). It can be also the return of the
module (e.g. H_.id < —fentropy if fentropy is the module function which returns a value of the
same type than C_id), although this form is not always recommanded when the return value is
a MegaWave2 object (since the structure has to be allocated at each call to the module). The
pointer C_id can never be NULL (MegaWave2 allocates space for the value, if needed). If C_id is of
MegaWave2 type, you must allocate the structure to the right size using functions of the system
library, before doing any computation with this variable (see Volume two: “MegaWave2 System
Library”). MegaWave2 writes the output value at the end of the module from the content of
*C_id.

Caution: when C_id is a pointer to a scalar, there is no number (nor character) to write in the
command line, and therefore these needed argument is virtual (it does not appear in the usage
print).

4.4 Optional arguments

The definition of optional arguments and needed arguments differs only in the fact that the
first are enclosed into { and }. In addition, optional arguments must be defined after needed
arguments. When they are several optional arguments, they are linked in the sense that the
selection of the first leads the need of the selection of the others.

H.id —>C_id

defines an optional argument with input value. C_id is a C variable of type pointer to a scalar
(e.g. char *), or a C variable of MegaWave2 type (e.g. Cmovie). If C_id = NULL, then the
argument has not been selected.

Module’s header MegaWave2 User’s Guide Module’s header 37

H.id —>C_id [Min,Max]

defines an optional argument with input value and with interval checking (an error is send if the
input value does not fit into the given interval [Min,Max]). MegaWave2 types are not allowed.
Min and Max must be constant of same type than C_id with Max > Min.

[H.id = Val] —>C_id

defines an optional argument with default input value. When the argument is not set by the user
then *C_id= Val that is, one can never have C_id = NULL. MegaWave2 types are not allowed.
Val must be a constant of same type than C_id. Warning: no implicit conversions are made
(e.g. if C_id is of type float, Val = 1.0 is allowed but not Val = 1).

[H.id = Val] —>C_id [Min,Max]

defines an optional argument with input value and with interval checking (an error is send if the
input value does not fit into the given interval [MinMax]). MegaWave2 types are not allowed.
Min and Max must be constant of same type than C_id with Max > Min.

H.id <—-C_id

defines an optional argument with output value. The argument has been given by the user if
and only if C_id # NULL. If C_id # NULL, MegaWave2 writes the output value at the end of the
module from the content of *C_id. C_id is a C variable of MegaWave2 type only (e.g. Cmovie).
If C_id # NULL, you must allocate the structure to the right size using functions of the system
library, before doing any computation with this variable (see Volume two: “MegaWave2 System
Library”).

Restriction: C_id cannot be a function (return value of the module), whereas this is allowed
with needed arguments (see section 4.3).

4.5 Variable arguments

...—>C_id

defines variable arguments with input values. C_id is a C variable of type pointer to a scalar
(e.g. char *), in this case its successive values are defined in the command line by writting the
numbers (or characters) on the terminal, or a C variable of MegaWave2 type (e.g. Cmovie), in
this case its successive values are given by writting the file names on the terminal. The module
function is call as many time as the number of variable parameters given in the command line.
If no variable parameters are given, the module function is called only once with C_id = NULL.

...—>C_id [Min,Max]

defines variable arguments with input values and with interval checking (an error is send if one
input value does not fit into the given interval [Min,Max]|). MegaWave2 types are not allowed.
Min and Max must be constant of same type than C_id with Max > Min.

Module’s header MegaWave2 User’s Guide Module’s header 38

...<—C.d

defines variable arguments with output values. C_id is a C variable of MegaWave2 type only
(e.g. Cmovie): its successive values will be put in the files whose names are written on the
terminal. The module function is call as many time as the number of variable parameters given
in the command line. If no variable parameters are given, the module function is called only
once with C_id = NULL.

Restriction: C_id cannot be a function (return value of the module), whereas this is allowed
with needed arguments (see section 4.3).

4.6 Unused arguments

notused — >C_id

defines an argument which is not used in the command line mode. We have always C_id = NULL
when the module function is called in the command line mode. Therefore, a value # NULL means
a call from the library. C_id is a C variable of type pointer to a scalar (e.g. char *), or a C
variable of MegaWave2 type (e.g. Cmovie).

Remarks:

e The notation — > does not mean here that the argument is an input argument.
e The word notused being a keyword, you cannot use it elsewhere.

e Unused arguments should be put at the end of the usage declaration.

4.7 Examples of headers

We give in the following the source of several modules, which were written in order to show the
various possibilities of the header’s syntax. All of these modules are available with the public
distribution, in the directory $MEGAWAVE2/src/demo.

4.7.1 Use of options

The module demoheadl demonstrates all the different kinds of options. It uses also two needed
arguments, one in input (a scalar with interval checking) and one in output (a MegaWave2 type).

Notice that the output variable (a Cimage) is not a parameter of the module function: it
is notified to the mother procedure using the return value of the module. This form is not
recommended since it leads to allocate memory for the Cimage at each call to the module. The
recommended form is to put the variable as a regular parameter of the module function, so the
variable is allocated by a call to mw_change_cimage (output,nrow,ncol) only if no previously
memory allocation was done.

Module’s header MegaWave2 User’s Guide Module’s header

/* mwcommand
name = {demoheadil};
version = {"1.0"};
author = {"Jacques Froment"};
function = {"Demo of MegaWave2 header - #1 : options -"};
usage = {
‘a’->flg
"Flag -option-",
’B’:cimage_input_opt -> B
"Input MegaWave2 type (cimage) -option-",
’c’:[c_opt=1.0] -> ¢
"Input scalar (float) with default value -option-",
’d’:d_opt -> d [-10,10]
"Input scalar (integer) with boundary -option-",
’e’: [e_opt=0.0] -> e [0.0,1e20]
"Input scalar (double) with default value and boundary -option-",
’F’:f_opt <- F
"Output MegaWave2 type (cimage) -option-",

float_input -> input [-1.0,1.0]
"Input scalar (float) with boundary -needed argument-",

cimage_output<-demoheadl

"Output MegaWave2 type (cimage) -needed argument-"
};

#include <stdio.h>

/* Include always the MegaWave2 Library */
#include "mw.h"

Cimage demoheadl(flg,B,c,d,e,F,input)

char *flg; /* Or int *flg, ... */

Cimage B; /* You don’t need *B since Cimage is of MegaWave2 type (pointer)x*/
float *c; /* You need *c since float is a scalar (not a pointer) */

int *d; /* You need *d since int is a scalar (not a pointer) */

double *e; /* You need *e since double is a scalar (not a pointer) */

Cimage F; /* You don’t need *F since Cimage is of MegaWave2 type */

float input; /* You don’t need any pointer since it’s a needed input */

Cimage output; /* return of the module */
if (flg) printf("flg flag active\n"); else printf("flg flag not active\n");
/* B may be NULL */

if (B)
{

Module’s header MegaWave2 User’s Guide Module’s header

printf("Optional input B image selected\n");
/* Here you can access to the content of the image B

*/...

}
else
{
printf("No B image selected\n");
/* Do not access to B */
}

/* c cannot be NULL since *c has a default value */
printf("*c = %f\n",*c);

/* d may be NULL */
if (d) printf("xd = %d\n",*d); else printf("No d value\n");

/* e cannot be NULL since *e has a default value */
printf("xe = %1f\n",*e);

/* F may be NULL */
if (F)
{
printf ("Optional output F image selected\n");
/* Here you can compute the image F, after dimensioning.
*/
F = mw_change_cimage(F,10,10); /* for a size of (10,10) */
if (F == NULL) mwerror (FATAL,1,"Not enough memory\n");
/*

y e

}
else printf("No optional output F selected\n");

/* Needed scalar argument is not a pointer */
printf ("input = %f\n",input);

/* We need to create the structure and to allocate the output image */
/* - In this example the size is (1,1) */

output = mw_change_cimage(NULL,1,1);

if (output == NULL) mwerror (FATAL,1,"Not enough memory\n") ;

/* Here you can compute the image output

y oo

return(output) ;

40

Module’s header MegaWave2 User’s Guide Module’s header 41

4.7.2 Use of optional arguments

With the module demohead2, we show the use of optional arguments. This module defines also
a needed output argument (a scalar).

/* mwcommand
name = {demohead2};
version = {"1.0"};
author = {"Jacques Froment"};
function = {"Demo of MegaWave2 header - #2 : optional arguments -"};
usage = {

outputO <- outO
"OQutput scalar (int) -needed argument-",

{
[input0=1] -> in0 [-5,5]

"Input scalar (int) with default value and boundary - optional argument -",
inputl -> inl

"Input scalar (float) - optional argument -",
outputl <- outl

"Output MegaWave2 type (cimage) - optional argument -

#include <stdio.h>

/* Include always the MegaWave2 Library */
#include "mw.h"

void demohead2(out0,in0,inl,outl)

int *outO; /* You need a pointer since it’s an output */
int *inO; /* You need a pointer since it’s an optional argument */
float *inl; /* You need a pointer since it’s an optional argument */

Cimage outl; /* outl is already a pointer since it’s of MegaWave2 type */

{
/* outO cannot be NULL */
*xout0 = 3;

/* in0O cannot be NULL */
printf ("*in0 = %d\n",*in0);

/* inl may be NULL */
if (inl) printf("*inl = %f\n",*inl); else printf("No inl value\n");

/* outl may be NULL */

Module’s header MegaWave2 User’s Guide Module’s header

if (outl)
{
/* Here you can compute outl, after dimensionning */
outl = mw_change_cimage(out1,10,10); /* for a size of (10,10) */
if (outl == NULL) mwerror (FATAL,1,"Not enough memory\n");
/%

.
3

else printf("No optional output image outli\n");

4.7.3 Use of variable and unused arguments

42

The module demohead3 shows the use of variable arguments. It includes also one unused ar-
gument, Win, which is a pointer to a scalar. The type of this argument should be Wframe, a
pointer to a window structure (See the Volume two: “MegaWave2 System Library” about the
Wdevice library). But Wframe is not a MegaWave2 object, therefore this type cannot be used
in the header. By casting the variable in the call to demohead3, one can define Win as a pointer

to any scalar.

Notice that the variable Output is of type Cimage *; it is therefore a pointer of pointer. Why 7

this is not requested by the MegaWave2 header, but by the last instruction
*0utput = Input;

This instruction changes the address pointed out by *0Output. If Output was of type Cimage,

the instruction
Output = Input;

would change the address inside the module function only, not outside. With Output of type
Cimage, the only solution is to copy the content of Input into Output (using the function

mw_copy_cimage()).

/* mwcommand
name = {demohead3};
version = {"1.0"};
author = {"Jacques Froment"};

function = {"Demo of MegaWave2 header - #3: variable and notused arguments -"};

usage = {

A->Input "Input (could be a cimage)",
...<-0Output "Output (copy of the input)",
notused -> Win "Window (internal use only)"
+;
*/
Y ettt *x/

#include <stdio.h>

/* Include always the MegaWave2 Library */

Module’s header MegaWave2 User’s Guide Module’s header 43

#include "mw.h"

/* Include the window since we use windows facility */
#include "window.h"

void demohead3(Input,Output,Win)

Cimage Input;
Cimage *Output; /* Here we define *Output since the function changes the */

/* pointer value (we set bellow *Output = Input) x/
char *Win; /* Should be "Wframe *Win" for a MegaWave2 window */
/* BUG: We cannot use other type than scalar or MegaWave2 */
/* Don’t forget to cast before the function call x/
{
if (Win != NULL)
{
printf("Library call: passing Window ptr\n");
/*
*/
¥

else printf("Command call: no Window ptr\n");

if (*Output == NULL) printf("No output requested !\n");
else
*0utput = Input;

4.8 System’s options

The options defined in the header’s module (see section 4.2) are called user’s options since they
are defined by the user. You may notice that one letter only is used to select a user’s option in
the command line.

In addition to user’s options, there exist other options called system’s options since they are
defined by MegaWave2 and always available. System’s options use more than one letter, therefore
no confusion can be made.

Here is the list of all available system’s options:

-debug actives the debugging mode that is, the print of the function mwdebug (see the Volume
two for a description of this function).

—-fsum prints the module’s function summary as given in the Volume three: “MegaWave2 User’s
Modules Library”, and exits. This recalls the user the parameters needed to call the module
from another module.

-ftype "file type" allows to overwrite the default file type for the MegaWave2 outputs. By
default, MegaWave2 selects the same file type than the one of the inputs (if the internal input
type matches the internal output type) or the file type which it considers to be the “most

Module’s header MegaWave2 User’s Guide Module’s header 44

common”. Using this option, you force MegaWave2 to write files having the type given in the
string (file types are given in the Volume two: “MegaWave2 System Library”). Do not use this
option in case of several outputs with incompatible types. On some file types, option(s) may
be added. Option mark is . For example, JFIFC:80 means JPEG/JFIFC file format with the
option 80 (quality factor).

-help prints a short help for the module and exits.
-proto prints the module’s function prototype as to be included in a C source file, and exits.

-verbose active the verbose mode that is, the print of all functions writting on the standard
output STDOUT or on the standard error STDERR. Indeed, these outputs may be redirected using
the shell variables MW_STDOUT and MW_STDERR (see section 2.2.1 page 16). The verbose switch
allows to suppress the redirection for only the current module.

-vers prints the module’s version number and exits.

System’s macros MegaWave2 User’s Guide System’s macros 45

5 System’s macros

You have been already introduced to the macros by Section 1.8. A system’s macro is a Bourne
Shell script which uses a normalized header. All system’s macros are located in the directory
$MEGAWAVE2/sys/shell. They are used to manage MegaWave2. The following section explains
each system’s macro. The next section 5.2 describes a file format which is used by some macros
to describe a list of MegaWave2 modules.

5.1 Macros summary

The next pages describe each system’s macro; the list is in alphabetical order.

System’s macros MegaWave2 User’s Guide System’s macros 46

OMacro

cmw?2 - The MegaWave2 Compiler

OUsage

cmw2 [-traditional] [-gnul [-g] [-X] [-0] [-c compiler_and_linker_option]
[-cc compiler_option] [-cl linker_option] [-Dname[=def]] [-Uname]
[-Ipathname] [-v] [-w] [-Ldirectory] [-1library] [-dep] [-pubsyslib]
[-N] module

ODescription

This command compiles a MegaWave2 module given by module. Since version 1.41 of this
system’s macro, module may also be a User’s macro. In that case, cmw2macro is called. Please
refer to Section 1.9 page 10 to learn more about this compilation. The module must be located
into a subdirectory of $MY_MEGAWAVE2 (plain user) or of $MEGAWAVE2 (administrator only).

OOptions

-traditional : Use the ’traditional’ preprocessor instead of the ’light’ one (see Section 1.4
page 5).
-gnu : Use the Gnu C compiler gcc instead of the standard C compiler cc.

-g : Debug flag. Cause the compiler to generate additional information needed by the symbolic
debugger. This option is normally incompatible with optimization.

-X : XMegaWave flag. Cause the compiler to generate an interface to include the module in the
XMegaWave2 software.

-0 : Invoke the C optimizer. This option is normally incompatible with debugging.

-c : pass the following argument compiler_and_linker_option to the compiler and to the
linker (if the argument contains spaces, you can still pass it as one item by surrounding in
n n

quotes").

-cc : pass the following argument compiler_option to the compiler only (if the argument
contains spaces, you can still pass it as one item by surrounding in "quotes").

-cl : pass the following argument linker_option to the linker only (if the argument contains
spaces, you can still pass it as one item by surrounding in "quotes").

-Dname : Define name to the preprocessor, as if by *#define’. If your compiler uses the ANSI
mode, you should define the name __STDC__.

System’s macros MegaWave2 User’s Guide System’s macros 47

-Uname : Remove any initial definition of name in the preprocessor.

-v : Verbose mode. Print messages about what command is running, together with the name
of temporary files. In this mode, temporary files are not deleted so you can edit them, debug,
or run the commands manually.

-w : Suppress warning messages.

-Ipathname : Change the algorithm used by the preprocessor for finding include files to also
search in directory pathname.

-Ldirectory : Change the algorithm used by the linker to search for the libraries. The -L
option causes the compiler to search in directory before searching in the default locations.

-1library : Include additional library given by library for linking.

-dep : Dependencies list. Cause the compiler to generate a primary dependencies list of the
module. See the macro mwdep for more information.

-pubsyslib : Link module with the PUBLIC system library (adm only).

-N : Do not propose to run lint (a C program checker /verifier) in case of compilation error.

System’s macros MegaWave2 User’s Guide System’s macros 48

OMacro

cmw2_all - Compile all MegaWave2 Modules

OUsage

cmw2_all [-traditional] [-gnu]l [-clear] [-g] [-X] [-0]
[-c compiler_and_linker_option] [-cc compiler_option]
[-cl linker_option] [-Dname[=def]] [-Uname] [-Ipathname] [-w]
[-Ldirectory] [-1library] [-2p] [-sp] [-dep]l [-pubsyslib] [-force]
[-v tracefile] [-N processid] src_directory

ODescription

This command compiles all MegaWave2 modules being in the given directory src_directory,
and recursively in all subdirectories of src_directory. It basically calls cmw2 as many time as
necessary. The location pointed by src_directory has to be a subdirectory of $MY_MEGAWAVE2
(plain user) or of $MEGAWAVE2 (administrator only).

OOptions

-traditional : Use the ’traditional’ preprocessor instead of the ’light’ one (see Section 1.4
page 5).
-gnu : Use the Gnu C compiler gcc instead of the standard C compiler cc.

-clear : Clear the following target directories before processing the compilations: bin, 1ib, obj,
mwi and doc/obj (confirmation is requested). This option allows to clean the target directories;
otherwise old modules stay in those directories even if the sources have been deleted (but if the
system’s macro mwrm was used).

-sp : Second pass. Do not compile a module if it has been already successfully compiled. This
option works only with linkers which do not set a binary containing unresolved symbols to be
executable.

-2p : Two pass. During the first pass, all the modules are compiled. The second pass calls
cmw2_all with -sp. This option allows modules which depend on other modules to be success-
fully compiled after the second pass. This option works only with linkers which do not set a
binary containing unresolved symbols to be executable.

-g : Debug flag. Cause the compiler to generate additional information needed by the symbolic
debugger. This option is normally incompatible with optimization.

-X : XMegaWave flag. Cause the compiler to generate an interface to include the modules in
the XMegaWave2 software.

System’s macros MegaWave2 User’s Guide System’s macros 49

-0 : Invoke the C optimizer. This option is normally incompatible with debugging.

-c : pass the following argument compiler_and_linker_option to the compiler and to the
linker (if the argument contains spaces, you can still pass it as one item by surrounding in
"quotes").

-cc : pass the following argument compiler_option to the compiler only (if the argument
contains spaces, you can still pass it as one item by surrounding in "quotes").

-cl : pass the following argument linker_option to the linker only (if the argument contains
spaces, you can still pass it as one item by surrounding in "quotes").

-Dname : Define name to the preprocessor, as if by *#define’. If your compiler uses the ANSI
mode, you should define the name __STDC__.

-Uname : Remove any initial definition of name in the preprocessor.

-Ipathname : Change the algorithm used by the preprocessor for finding include files to also
search in directory pathname.

-Ldirectory : Change the algorithm used by the linker to search for the libraries. The -L
option causes the compiler to search in directory before searching in the default locations.

-1library : Include additional library given by library for linking.
-w : Suppress warning messages.

-dep : Dependencies list. Cause the compiler to generate the primary dependencies list of each
module. See the macro mwdep for more information.

-force : Do not ask confirmation before removing target directories.

-v tracefile: Verbose. Output trace of compilations in the file tracefile that can be viewed
after the command ends.

-pubsyslib : Link modules with the PUBLIC system library (adm only).

-N processid : Internal use only.

System’s macros MegaWave2 User’s Guide System’s macros 50

OMacro

cmw2macro - Compile a user’s macro : make it available and generate the document skeleton

OUsage

cmw2macro [-adm] [-ret] [-path path] [-absolute] macro

ODescription

This command writes the document skeleton (the .doc file) corresponding to the macro macro,
and it creates a symbolic link in $MY_MEGAWAVE2/shell (or in $MEGAWAVE2/shell if the option
-adm is selected), so that you can call these macro from any location. You should not have to
use directly this command, since it is called by cmw2, mwmakedoc or mwdoclatex when needed.

OOptions

-adm : search macro in $MEGAWAVE2 (instead of $MY_MEGAWAVE2.
-ret : return filename (with pathname) of the document skeleton.
-path path : search macro in path (instead of in $MY_MEGAWAVE2).

-absolute : create link using absolute pathname (since cmw2macro version 2.08, default is to
create link with relative pathname).

System’s macros MegaWave2 User’s Guide System’s macros 51

OMacro

cxmw?2 - The XMegaWave2 Compiler

OUsage

cxmw2 [-gnu]l [-g] [-0] [-Dname[=def]] [-Uname] [-Ipathname] [-w] [-Ldirectoryl]
[-1library] modules_file

ODescription

This command allows to compile your own version of the XMegaWave2 software. The version
is defined by the modules you want to include in the software. Each module name will appear
into a window panel, inside a window hierarchy defined by the group of the module. The input
of cxmw2 is an ascii file which gives the list of the modules to include together with the groups
hierarchy. Please see Section 5.2 to learn more about the format of this file. In order to be
included in XMegaWave2, each module must have been compiled with cmw2 using option -X.

The name of the XMegaWave2 run-time program is myxmw?2.

OOptions

-gnu : Use the Gnu C compiler gcc instead of the standard C compiler cc.

-g : Debug flag. Cause the compiler to generate additional information needed by the symbolic
debugger. This option is incompatible with optimization.

-0 : Invoke the C optimizer. This option is incompatible with debugging.
-Dname : Define name to the preprocessor, as if by *#define’.
-Uname : Remove any initial definition of name in the preprocessor.

-Ipathname : Change the algorithm used by the preprocessor for finding include files to also
search in directory pathname.

-Ldirectory : Change the algorithm used by the linker to search for the libraries. The -L
option causes the compiler to search in directory before searching in the default locations.

-1library : Include additional library given by library for linking.

-w : Suppress warning messages.

System’s macros MegaWave2 User’s Guide System’s macros 52

OMacro

mwmakedoc - Make a new documentation for the modules (Volume 3)

OUsage

mwmakedoc [-c] [-h] [-N] [-g group_directory] [-nobin] [+/-index] [+/-html]
mw2dir

ODescription

This command creates the TEX files corresponding to the Volume Three of the MegaWave2
guides (“MegaWave2 User’s Modules Library”). The documentation is written in order to keep
consistency with the current MegaWave2 modules and macros put in the directory mw2dir (e.g.
$MEGAWAVE2, $MY_MEGAWAVE2 or a selected copy of such directories). The TEX files are written in
the directory mw2dir/doc, so you need write permission in this directory. The modules, located
into mw2dir/src, must have been compiled in order to fill the target directories mw2dir/bin and
mw2dir/doc (not applicable for macros). Each module and macro must be documented that is,
a M.tex file must be written in mw2dir/doc for all M modules and macros (see Section 7 for more
information).

In order to compile the documentation, run ITEX several times (as well as other commands,
such as mwmodbibtex and makeindex) as mentioned at the end of the execution of this command,
or set option -c.

OOptions

-c : Compile the documentation (Volume 3) after TEX files have been created.

-h : Make a html (HyperText Markup Language) version of the documentation (Volume 3)
using latex2html. Need -c. The generation of all html files may take a while.

-N : Identify the command to be not the primary process (internal use).

-g group_directory : Limit the scanning of modules to the given group directory (and sub-
directories).

-nobin : Do not check consistency with the binaries (i.e. a module for which the compilation
failed may be documented).

+index : Force the creation of an index for the modules. You normally do not need to set this
option, since it is the default if the makeidx INTEX package is installed. If the option is set, you
will need this package in order to run IATEX on the generated TEX files.

-index : Do not create an index for the modules, even if the makeidx IXTEX package is installed.

System’s macros MegaWave2 User’s Guide System’s macros 53

+html : Force the addition of html code in the TEX files, to make the result of latex2html nicer
(this command may be used to translate IATEX files to HyperText Markup Language). You
normally do not need to set this option, since it is the default if the html and hthtml TEX

packages are installed. If the option is set, you will need these packages in order to run TEX
on the generated TEX files.

-html : Do not add html code in the TEX files, even if the html and hthtml IXTEX packages are
installed.

System’s macros MegaWave2 User’s Guide System’s macros 54

OMacro

mwarch - Machine architecture

OUsage

mwarch [-s || -k]

ODescription

This command displays the architecture of the current host. MegaWave2 assumes that two
machines with the same name returned by mwarch can run the same executables and can link
the same objects. Therefore, you may have to call mwarch with the option -s if MegaWave2
supports several implementations (corresponding to incompatible operating systems) for the
same machine.

If mwarch returns “unknown”, you cannot run your version of MegaWave2 on this architecture.

OOptions

-s : Add to the architecture name a suffix to identify the release of the operating system.

-k : Give long architecture name.

System’s macros MegaWave2 User’s Guide System’s macros 55

OMacro

mwcleandistrib - Clean from objects and old files the MegaWave2 Distribution (adm only)

OUsage

mwcleandistrib mw2_distrib_dir

ODescription

This macro can be used to remove all unnecessary files from the MegaWave2 distribution direc-
tory named mw2_distrib_dir (recursively inside each subdirectory), in order to clean it. Files
removed are old files generated by emacs (i.e. ending by ~) and objects.

System’s macros MegaWave2 User’s Guide System’s macros 56

OMacro

mwcmwcheck - Check the MegaWave2 compiler (adm only)

OUsage

mwcmwcheck

ODescription

This macro checks the MegaWave2 compiler cmw2 by blind-compiling some standard modules. It
is intended to check if the kernel has been correctly installed on a new architecture, before calling
cmw2_all. It should be used by the MegaWave2 administrator only, during the installation stage.

In case of errors, the output of cmw2 is displayed and the macro exists with non-null error code. If
everything goes well, you should not experiment lot of problems by compiling the whole modules
of the standard distribution.

System’s macros MegaWave2 User’s Guide System’s macros 57

OMacro

mwdep - Make all the secondary dependencies lists

OUsage

mwdep [-adm] [-v]

ODescription

This command has to be called after all modules have been compiled using the option -dep of
cmw2 or cmw2_all, since it needs the primary dependencies lists of each module
$MY_MEGAWAVE2/doc/obj/DEPENDENCIES/*.mis). From those files, mwdep generates in
$MY_MEGAWAVE2/doc/obj/DEPENDENCIES the following files, one per module <M>:

e <M>.called lists the modules called by <M>;
e <M>.calling lists the modules calling <M>;

e <M>.dep is a TpXfile which lists the modules called by <M> followed by the modules calling
<M>.

The file <M>.dep is included by the documentation file to constitute the “See Also” field. There-
fore, run mwdep before mwmakedoc, mwdoclatex or mwdocxdvi if you want to get the right “See
Also” fields in your documentation.

The file <M>.calling is used by cmw2 to issue a warning message when the module <M> is
compiled: you should re-compile also all the modules listed in <M>.calling.

Warning : because this command uses the output generated by the link editor, it is linker and
language-dependent. Only a subset of linkers and languages is supported (english is always
supported; french is supported on some linkers).

OOptions

-adm : Administrator flag. The developer’s directory is $MEGAWAVE2 instead of $MY_MEGAWAVE2.
The user must have write permission into this directory.

-v : Verbose. Write more information on the standard output.

System’s macros MegaWave2 User’s Guide System’s macros 58

OMacro

mwdoc - Easy access to the documentation

OUsage

mwdoc [<name> || M || S || F || 1 || 2 || 3]

ODescription

This command offers an easy access to the documentation. Since objects doc files are in the
DeVice Independent (DVI) file format, your system must support the DVI previewer xdvi. If
you call mwdoc without argument, it will ask you to tell him what kind of doc you are seeking.
You may also put directly in argument the doc you want.

OOptions

<name> : The word <name> is supposed to be the name of a module or of a user’s macro. This
causes to view the doc of the correponding module or user’s macro.

Mor m : List all modules and user’s macro with a short description.
S or s : List all system’s macros with a short description.

F or f : List all available external (file) types with a short description. To reduce the list to the
file types you are looking for, after the prompt specify a keyword.

1 : View the Volume 1, MegaWave2 User’s Guide.
2 : View the Volume 2, MegaWave2 System Library.
3 : View the Volume 3, MegaWave2 User’s Modules and Macros Library.

System’s macros MegaWave2 User’s Guide System’s macros 59

OMacro

mwecho - Portable echo with -n and -E options

OUsage

mwecho [-n] [-E]

ODescription

This command emulates a portable echo command with -n and -E options. The command
mwecho -n replaces mwechon which is no more furnished.

OOptions

-n : Do not output the trailing newline.

-E : Disable interpretation of backslash-escaped characters.

System’s macros MegaWave2 User’s Guide System’s macros 60

OMacro

mwinstall - Install MegaWave2 (administrator only)

OUsage

mwinstall [-traditional] [-static] [-public || -public=private]
[-clear] [-debug] [-level 1] mw2distribution

ODescription

This command is for the MegaWave2 Administrator only. Remember that the Administrator
is the one which is supposed to install, maintain and update MegaWave2 for all users. This
command may be called directly, but you may also use the shell Install in the root directory
of mw2distribution where mw2distribution is an original MegaWave2 Distribution Package
($PRIVATE_MEGAWAVE2). The main steps of the installation are as follows :

1. The environment variables needed to run most macros are built, using the macro mwsetenv.

2. The kernel is compiled for your machine architecture, using installation shells and makefiles
located in mw2distribution/kernel. The kernel is composed by the Wdevice library
(interface with the Window System), by the System library, and by the preprocessor.

3. The modules and user’s macros are compiled for your machine architecture, using the
macro cmw2_all.

4. The volume 3 of the documentation (User’s Modules and Macros Library) is generated,
using macros mwdep and mwmakedoc.

5. If the option —-public has been selected, a list of successfully compiled modules and user’s
macros is written using the macro mwmodlist, and modules and user’s macros of this list
are installed into the public MegaWave2 using the macro mwmodinstall.

The macro mwinstall is intended to allow an easy installation process on the very most common
machines and configurations only. It means that something goes wrong is not an unlikely event.
In that case, you will have to correct the wrong things by yourself and to rerun the macro,
eventually using the option -level 1 to avoid levels already completed. Or you will have to
make the installation “manually” that is, by calling lower-levels macros. Such manual installation
is not a bad idea, even if everything goes well with mwinstall. A manual installation allows
to customize MegaWave2 more deeply than the standard one. For example, you may want to
install in the public MegaWave2 a subset of the private modules only. This can be easily done
by editing the list of modules written by mwmodlist, before calling mwmodinstall.

Be aware that, since the installation is machine-dependent, you should install MegaWave2 on
each machine architecture for which you want to be able to use it. Of course, if for each

System’s macros MegaWave2 User’s Guide System’s macros 61

installation you specify the same public MegaWave2 directory, source files will not be duplicated.

OOptions

-traditional : When compiling modules, use the 'traditional’ preprocessor instead of the ’light’
one (see Section 1.4 page 5).

-static : Make static kernel libraries (by default, kernel libraries are shared). Selecting this
option may be hazardous since modules linked with static libraries are of big size. You should use
it after having installed the shared libraries only (do not select —~clear or you will remove them),
so that by default modules would be still dynamically linked. To statically link a module, call
cmw2 -c cc_opt with cc_opt the corresponding cc option (e.g. -c -static with gcc). The
advantage of a module statically linked lies in the fact that it can be executed without the
libraries. In addition, some debuggers have strange behavior when used with dynamically linked
modules.

-public : Install two MegaWave2, the private one for the administrator only and the second one
for plain users. In this way, the administrator will be able to change and check modules, user’s
or system’s macros and functions of the kernel libraries without touching the public version.
This option is obviously usefull only if several persons intensively use MegaWave2, and if you
plan to update MegaWave2.

-public=private : Allow other persons than the administrator to use the private MegaWave2.
By default, the administrator is the only one supposed to use the private MegaWave2.

-clear : Clear objects in the previous installation.

-debug : Pass the debug option to the C compiler. By default, the C compiler is called with
the optimization flag.

-level 1 : Do not start the installation from the beginning (level 1) but from level I. This
supposes that previous levels have been successfully completed. In particular, the environment
variables must be correctly set in the shell from which you call mwinstall.

System’s macros MegaWave2 User’s Guide System’s macros 62

OMacro

mwmodbibtex - Run BibTeX on the MegaWave2 documentation (guide #3) and add reference
to modules

OUsage

mwmodbibtex mw2dir

ODescription

This command replaces the bibtex command included in standard TEX packages, when compil-
ing the “MegaWave2 User’s Modules Library” documentation (guide #3) into the subdirectory
mw2dir/doc. In addition of calling bibtex to create a bibliography file guid3.bbl, mwmodbibtex
adds to the bibliography file a list of references to modules : at the end of each bibliographical
reference, the list of modules making citation to this reference is added. As a result of, the
guide #3 obtained by normally post-processing the file with IATEX (as written when the com-
mand mwmakedoc ends) will contain, in the bibliography section, a list of modules associated to
bibliographical references.

As well as bibtex, use of mwmodbibtex assumes at least one bibliographic database (.bib file)
exists. The needed one is $MEGAWAVE2/doc/public.bib which contains references for public
modules. It is normally included in standard MegaWave2 distribution. Put references for
private modules in $MY_MEGAWAVE2/doc/private.bib.

In addition to standard fields one uses into public.bib and private.bib files, one may specify a
WWW url by using the special command \hturl, as in the following :

note = "See \hturl{http://www.cmla.ens-cachan.fr/Cmla/Megawavel}"

By doing this, the corresponding url will become an active hyperlink when the I4TEX documen-
tation file will be processed through the latex2html command (and no error will be encountered
if the latex2html package is not available).

Beware : when documenting module M in M.tex, do not collapse citations.
Use e.g. \cite{keyl}\cite{key2} instead of \cite{keyl,key2}.

System’s macros MegaWave2 User’s Guide System’s macros 63

OMacro

mwmodinstall - Install a new MegaWave2 public modules environment (administrator only)

OUsage

mwmodinstall [-clear] [-tdir target_directory]
[-X file_of_xmw2_modules] file_of_modules

ODescription

This command allows to copy selected modules and user’s macros from the source directory
$PRIVATE_MEGAWAVE2 to the target directory $PUBLIC_MEGAWAVE2. It can be used by the ad-
ministrator only to make some private modules available for all. The command copies not only
the module sources, but also everything associated such as objects, binaries, documentation and
data. The content of $PRIVATE_MEGAWAVE2/data/PUBLIC is always entirely copied.

The file file_of _modules lists the modules to be copied. See Section 5.2 for more informations
about such modules file. In the case where your configuration is such that
$PRIVATE_MEGAWAVE2 = $PUBLIC_MEGAWAVE2, this macro is obviously useless.

Before running this command (which may take a while), run mwmodcheck to check the consistency
of the modules file regarding the content of the source directory. This macro will tell you any
modules listed in the file but not in the source directory, incomplete modules (e.g. without
documentation attached) and, for information, modules which will remain private (i.e. in the
source directory but not listed in the file).

OOptions

-clear : Clear previous modules in $PUBLIC_MEGAWAVE2. This option should be used each time
the administrator wants to make a complete new version of the public modules.

-tdir target_directory : Change default target directory $PUBLIC_MEGAWAVE2 to be
target_directory.

-X file_of_xmw2_modules : Generate a public XMegaWave2 software containing the modules
listed in the file file_of _xmw2_modules.

System’s macros MegaWave2 User’s Guide System’s macros 64

OMacro

mwmodlist - List the modules and macros found in a MegaWave2 source directory

OUsage

mwmodlist [-mfile] [-bad] [-group gdir] mw2dir

ODescription

This command prints all the modules and macros found in the directory mw2dir, which has to
be a MegaWave2 directory such as $MEGAWAVE2 or $MY_MEGAWAVE2. In case of a module not
successfully compiled, a warning is issued.

OOptions

-mfile : print the list in the modules file format (which is compatible with input of macros like
mwmodinstall). See Section 5.2 for more informations about this format.

-bad : print modules which are not successfully compiled only.

-group gdir : restrict the list to the group and subgroups of gdir.

System’s macros MegaWave2 User’s Guide System’s macros 65

OMacro

mwmodsearch - Search for modules matching words

OUsage

mwmodsearch [-1] [-public] [-private] word_1 [word_2 ... word_n]

ODescription

This command searches for modules and user’s macros matching the given list of words. It is use-
ful when you are seeking a specific algorithm without any idea about the module’s name or even
about the group’s name, and when the short function description (as returned by mwmodlist)
is not enough to perform a search on.

With mwmodsearch, the search is performed both on the source file and on the documentation
(tex file). Only one matching file is enough to satisfy the search. But when several words are
given, all words must be found in the same file.

By default, each matching lines are printed together with the name of the file. This may result
to a pretty huge number of lines if the words are common. In such a case, use -1 and try to
reduce the number of matching modules by adding new keywords.

OOptions

-1 : list only. Do not output matching lines, but only the list of matching modules.
—-public : restricts search to public modules and user’s macros.

-private : restricts search to private modules and user’s macros.

System’s macros MegaWave2 User’s Guide System’s macros 66

OMacro

mwnewuser - Create the directory hierarchy for a new user

OUsage

mwnewuser

ODescription

If you are a new user, you may run this command once: it creates the directory $MY_MEGAWAVE2
and all subdirectories needed by the MegaWave2 system’s macros.

System’s macros MegaWave2 User’s Guide System’s macros 67

OMacro

mwrm - Remove module(s) or user’s macro(s)

OUsage

mwrm [-macro] M

ODescription

This command searches all modules (or user’s macros) named M and removes them from the
system (confirmation is requested before to operate). By using this command instead of directly
removing the source files, you make sure to remove all objects and references attached to the
modules.

Only the MegaWave2 administrator should be able to remove public modules and macros. There-
fore make sure the $PUBLIC_MEGAWAVE2 directory is not writable for plain users.

OOptions

-macro : Say that M is a user’s macro and not a module. You normally don’t need to set this
option, since the command recognizes if M is a macro by its name, which should begin with a
capital letter.

System’s macros MegaWave2 User’s Guide System’s macros 68

OMacro

mwrnwordmod - Rename words inside modules

OUsage

mwrnwordmod [-adm] [-all] [-check] [-d dir] [-f file_of_names]

ODescription

Sometimes the name of a system’s function, of a structure or of a structure field may change.
In such a case, you may use this macro in order to automatically perform the change of name
inside each modules.

At the location of the macro mwrnwordmod, you can also find the file mwrnwordmod.data : this is
an Ascii file which gives the list of words to change, in the obvious format 0ld_name new_name
(one change per line).

This list is updated to reflect the last change of names we have performed in the kernel. By
default (if you do not use the -f option), this is this file which is read to perform the changes.
The mwrnwordmod.data is usefull if you have written lot of modules and if you install a new
MegaWave2 kernel, for which some function names or structures have changed.

Warning :
e The replacement is performed using the stream editor sed. Therefore, the string(s) to be

searched is specified by a regex (regular expression).

e Be aware that the content of the file is not analyzed : for example, if you wish to change
a field named open to is_open, all occurrences of “open” will be touched, including those
inside comments.

e [t is recommended to make a copy of the src directory before running this macro : if the
result does not match your wish, you will be able to restore the old state.

OOptions

-adm : administrator flag. Scan $MEGAWAVE2/src directory instead of the default $MY_MEGAWAVE2/src
-all : scan all files (not only modules, that is .c files)

-check : check only. See files that would be changed, but change nothing.

-d dir : scan directory dir instead of $MY_MEGAWAVE2/src or $MEGAWAVE2/src.

-f file_of_names : use this file instead of the list given by mwrnwordmod.data.

System’s macros MegaWave2 User’s Guide System’s macros 69

OMacro

mwsetenv - Set up the environment variables needed by MegaWave2 (adm only)

OUsage

mwsetenv [-public=private || privateonly] mw2distribution

ODescription

This command helps the administrator to set the environment variables needed by most user’s
macros. See Section 2.1.4 to learn more about the environment variables. The directory
mw2distribution must corresponds to an original MegaWave2 Distribution Package, its name
will be the value set to the variable $PRIVATE_MEGAWAVE2.

As a result of, this macro write two files to be used by the administrator and two files for plain
users (one for Bourne-compatible shells and one for C-compatible shells). Those files, which
may have to be customized, are to be included in the .profile or the .cshrc file. The location
of these files are given at the end of the macro execution.

OOptions

-privateonly : Select this option if there is no public MegaWave2. By default, this macro
considers that both a public MegaWave2 and a private one has to be installed.

-public=private : Select this option if there is no public MegaWave2 and if the installation
allows other persons than the administrator to use the private MegaWave2.

System’s macros MegaWave2 User’s Guide System’s macros 70

OMacro

mwsysmaclist - List all system’s macros

OUsage

mwsysmaclist

ODescription

This command prints all the system’s macros found in the directory $MEGAWAVE2/sys/shell.

System’s macros MegaWave2 User’s Guide System’s macros 71

OMacro

mwvers - MegaWave2 Version

OUsage

mwvers [-major || -minor || -variant]

ODescription

This command returns the current version number of the public MegaWave2 software you are
using. Please refer to this version number when you report bugs. On MegaWave2 Version 1.x,
this command was available on MegaWave2 system issued from the distribution package only.
This is no more the case.

OOptions

-major : Return the major version number only (e.g. 2 if the full version is 2.00a.12)
-minor : Return the minor version number only (e.g. 00a if the full version is 2.00a.12)

-variant : Return the variant version number only (e.g. 12 if the full version is 2.00a.12)

System’s macros MegaWave2 User’s Guide System’s macros 72

OMacro

mwwhere - Give the location of the source of a module or user’s macro

OUsage

mwwhere [-macro] [-bin] M

ODescription

This command returns the path where the source of the given module or user’s macro M is found,
searching first for private modules and then for public ones.

OOptions

-macro : Say that M is a user’s macro and not a module. You normally don’t need to set this
option, since the command recognizes if M is a macro by its name, which should begin with a
capital letter.

-bin : Return the path if the corresponding binary (executable) exists only. When two paths
are returned with this option set, it means that one module is hidden (with default settings, the
private module hides the public one). In such a case, the macro exits with value 2.

System’s macros MegaWave2 User’s Guide System’s macros 73

OMacro

mwdoclatex - Make the documentation of a module or of a user’s macro

OUsage

mwdoclatex [-adm] M

ODescription

This command compiles a single module documentation file using N TEX. Use it instead of the
macro mwmakedoc when you want to print the documentation of only one module or user’s macro
(for example the one you just finished to write). If you rather want to see the documentation
on the screen, use the macro mwdocxdvi.

Run mwdoclatex after cmw2 has been called so that the document skeleton M.doc exists. Make
sure to have written the corresponding TgXfile (M.tex), see Section 7.

This command calls IXTEX and, as the result, you get a M. dvi file into the $MY_MEGAWAVE2/doc/obj
directory which can be used to print the documentation.

OOptions

-adm : Say that M is a public module or a public macro from $MEGAWAVE2 and not from
$MY_MEGAWAVE2. In that case, if you are not the administrator but a plain user, and if the
administrator didn’t make this doc already, the dvi file M.dvi is created into
$MY_MEGAWAVE2/tmp/megawave2_doc/user.

System’s macros MegaWave2 User’s Guide System’s macros 74

OMacro

mwdocxdvi - Display on the screen the documentation of a given module

OUsage

mwdocxdvi [-adm] [-macro] M

ODescription

This command compiles a single module documentation file using the macro mwdoclatex, and
then call the DVI previewer for the X Window System, xdvi, to display the documentation on
the screen.

OOptions

-adm : Say that M is a public module or a public macro from $MEGAWAVE2 and not from
$MY_MEGAWAVE2. In that case, if you are not the administrator but a plain user, and if the
administrator didn’t make this doc already, the dvi file M.dvi is created into
$MY_MEGAWAVE2/tmp/megawave2_doc/user.

-macro : Say that M is a user’s macro and not a module. In that case, the macro cmw2macro is
called to generate a file M.doc. You normally don’t need to set this option, since the command
recognizes if M is a macro by its name, which should begin with a capital letter.

System’s macros MegaWave2 User’s Guide System’s macros 75

5.2 List of modules

Some system’s macros (e.g. cxmw2, mwmodinstall) need to know a list of modules you want
to process together with the group hierarchy. MegaWave2 uses a plain ascii format to describe
such a list in a file. You can write this file manually, or you can use the output generated by
the macro mwmodlist using -mfile option.

Each line of the file is normally filled by a module name. They are special symbols which change
the meaning of the line (those have to be the first character of the line)

e 7 : comments. The line is ignored.
e #: keyword. The following keywords are available:

— #group group_name : Give the group to which the next modules (or subgroups)
belong. The hierarchy of the groups must be given that is, if B is a subgroup of the
main group A, the line #group A must appear and after that, the line #group A/B.

— #dir dirname : Change the default source directory for the modules to be dirname
(default is $MEGAWAVE2). Do not use this keyword for cxmw2.

User’s macros MegaWave2 User’s Guide User’s macros 76

6 User’s macros

You have been already introduced to the macros by the section 1.8. An user’s macro is a Bourne
shell script which uses a normalized header, and which calls a sequence of commands, such as
MegaWave2 modules.

Since system’s macros use the header of the user’s macro to perform some operations, as to
make the documentation of the macro (see section 7.2), you have to correctly fill the header
when you write a new macro.

In order to easily recognize a user’s macro from a user’s module (they are located in the same
source directory), we use capital letters to name macros (at least for the first letter) and lower
letters to name modules. We recommand you to follow this convention.

6.1 Header of a Macro

Each macro must have an header which consists of variables to be filled. Falling to define most
of these variables leads malfunctions when calling some systems’s macros.

In the following is the list of the variables to define

e _Prog: Name of the macro.

e _Group: Group where belongs the macro.

_Func: Short description of the function performed by the macro.

e _Vers: Version number of the macro.

_Date: Year of the creation or last change.

_Auth: Name of the author.

_Usage: Usage line, following Unix command conventions (do not mention the program
name).

_Labo: Name and address of the institution, when it is not the CMLA.

You can get examples of such headers by reading the source of some systems’s macros (which
share the same header conventions) or of some public user’s macros given in the distribution.

6.2 How to use user’s macros

An user’s macro being a Bourne shell script, you don’t really need to compile it before to call
it. But in order to be able to call it from any location, a link has to be created in a direc-
tory recorded in the path variable (which is $MEGAWAVE2/shell if you are the administrator,
$MY_MEGAWAVE2/shell otherwise). In addition to that, the documentation must also be gener-
ated. Therefore, you should compile a user’s macro as if it was a module, using cmw2.

Documentation MegaWave2 User’s Guide Documentation 7

7 Documentation

Warning : in MegaWave2 versions 2.x, the doc directory structure has changed. Now put
the documentation you write (the .tex files) into the $MEGAWAVE2/doc/src/ directory (admin-
istrator) or $MY_MEGAWAVE2/doc/src/ (plain user) directory, without creating subdirectories
for the groups : the .tex files of all modules of all groups belong to the same directory. The
$MEGAWAVE2/doc/obj/ and $MY_MEGAWAVE2/doc/obj/ directories contain files that are auto-
matically generated (such as .doc and .dvi files). Do not put your .tex files here, they may
be destroyed by the system !

7.1 Document a module

Each module you write must be documented. MegaWave2 helps you as much as possible in this
unattractive task: when you compile a module, a document skeleton is generated in the directory
$MEGAWAVE2/doc/obj/ (or $MY_MEGAWAVE2/doc/obj/). It takes the name of the module and
the extension .doc. This file documents in the INTEX language about everything that could
be automatically done, as the synopsis of the run-time command, the summary of the module
function, the release number and the copyright for the authors and laboratories.

(Un)Fortunately, there will always be a part of the documentation which cannot be automatically
generated: the mathematical description of the algorithm. This part is the Description field of
the documentation. Therefore, the author of a new module must write this content in a file
into the $MEGAWAVE2/doc/src/ (administrator only) or $MY_MEGAWAVE2/doc/src/ (plain user)
directory. Give this file the name of the module with the extension .tex. As the file will be
inserted by MegaWave2 into the whole documentation, you must write the text using a subset of
the KTEX language. In particular, don’t use any commands about the style or the presentation
(as \begin{document}, \documentstyle, \newpage, \section, ...).

You can get a lot of examples of such documents by seeking the files into subdirectories of
$MEGAWAVE2/doc/src.

Since MegaWave2 V 2.21, the system uses bibliographic databases where all citations are
recorded. As this allows cross-references, it is now possible to get all modules associated to
a given article. In order to fulfill the new requirements, citations have to be set in the .tex file
using the standard \cite IXTEX command, and the corresponding references have to be given
in the bibliographic database (.bib file), NO MORE in the .tex file. Beware, do not collapse
citations : use e.g. \cite{keyl}\cite{key2} instead of \cite{keyl,key2}. References for
private modules have to be put in $MY_MEGAWAVE2/doc/private.bib while references for public
modules are in $MEGAWAVE2/doc/public.bib. Of course, only references for private modules
not in public.bib have to be in private.bib. See the system macro mwmodbibtex for more
information about the bibliographic database.

7.2 Document a macro

The documentation of a macro follows the same rules as the ones for modules. Therefore,
for each new user’s macro, you must write a description file $MEGAWAVE2/doc/src/MACRO. tex

Documentation MegaWave2 User’s Guide Documentation 78

(for a public macro, administrator only), or $MY_MEGAWAVE2/doc/src/MACRO. tex (for a private
macro), MACRO being the name of the macro located in a subdirectory of $MEGAWAVE2/src/
(or of $MY_MEGAWAVE2/src/). In this file, you put in IXTEX the part which corresponds to the
Description field of the documentation.

The difference between macros and modules is that macros do not need really need a compilation,
and therefore you may call a specific command to generate the document skeleton
$MEGAWAVE2/doc/obj/MACRO.doc (or $MY_MEGAWAVE2/doc/obj/MACRO.doc), which is the macro
cmw2macro (see section 5.1). Since MegaWave2 Versions 2.x, cmw2 will also perform this task if
its argument is a user’s macro.

7.3 Print the documentation

Once the document skeleton of a module or macro is generated, and the description file is written,
you can compile the document skeleton by calling the macro mwdoclatex (see section 5.1). Of
course this needs to have the WTEX environment installed on your system. You get a DVI file
which can be printed on various devices using commands of the standard TeXware distribution.

If you want to print the documentation of all modules and user’s macros instead of only one,
use the macro mwmakedoc. This will actually create an updated sample of the Volume Three of
the MegaWave2 guides (“MegaWave2 User’s Modules Library”).

In the document skeleton of each module (not available for macros), a field named “See Also”
lists all the modules calling the module or called by the module: this is a dependencies list. In
order to update this list, you need to compile each module which the option -dep and you need
to run the macro mwdep before the macros mwdoclatex and mwmakedoc.

Annex MegaWave2 User’s Guide Annex 79

8 Annex

8.1 License

You do not have to send a registration form any longer, but by using MegaWave2 you are still
supposed to follow the term of the MegaWave2 Public License below.

MEGAWAVE2 PUBLIC LICENSE
Terms and conditions for using, copying, distribution and modification of
MegaWave2 version 2.x.

You acknowledge to be informed about the following facts, and you accept the consequences:

o MegaWave2 is a “soft-publication” for the scientific community, maintained by the image
department of the CMLA, URA CNRS 1611 de I’Ecole Normale Supérieure de Cachan.

e The image department is founded by the CMLA only, using public funds and private grants
for software development.

e MegaWave2 has been implemented for research purposes only; it comes therefore without
any warranty.

e The MegaWave2 compiler and the system libraries are known to run on some computer
models and operating systems only.

e The CMLA may not maintain this software in the future.
e The CMLA can not help any user to install nor to use the software.
e The CMLA may not publish all the code contained in the various versions of MegaWave2.

e For transparency, the published code contains the source of the mathematical algorithms
developed at the CMLA. You are allowed to copy, modify and redistribute these programs.

The CMLA claims to impose on the diffusion and on the use of its software the same rules as
the well-known rules which apply to paper publication.

You agree to

e inform without delay the CMLA (see address next page) about any contract between your-
self or your department and any private or public organization, whenever its execution uses
an algorithm (modified or not) included in MegaWave2. You will inform this organization
about the origin of these algorithms by writing in the contract the use of the MegaWave2
software.

e mention in all products (as computer programs or scientific papers) which take advantage
of an algorithm included in MegaWave2 (modified or not), the use of this software together
with the name(s) of the author(s) written in the header of the corresponding module and
with the address of the CMLA and of other laboratories implied in the development, if
any.

Annex MegaWave2 User’s Guide Annex 80

8.2 How to contact the CMLA

Please visit our World Wide WEB homepage at the following URL :
http://www.cmla.ens-cachan.fr/Cmla. By selecting the MegaWave link, you will get the
latest news on MegaWave2.

At this site you will be able to

1. download the latest version of MegaWave2;

2. get access to the MegaWave2 forum (to submit a question and to read the answers given
to former questions);

3. submit new modules;
4. propose some corrections on the existing modules and kernel,;

5. inform the CMLA about contracts or products which use algorithms included in MegaWave2,
as it is required by the MegaWave2 Public License;

6. report bugs, remarks, ...

Be sure that, even if we are not always able to answer, all mails will be read and remarks will
be take into consideration for a new release.

Address: MegaWave, CMLA, Ecole Normale Supérieure de Cachan, 61 avenue du Président
Wilson, 94235 Cachan cedex, France.

E-mail: megawave@Qcmla.ens-cachan.fr

Index

address, 80
administrator, 11

MW _LIBJPEG, 14
MW _LIBTIFF, 14

MW _LIBX11, 14

MW _LIBXm, 14

o MW_MACHINETYPE, 13
bibliography, 62, 77 MW_STDERR, 16, 44

bibtex, 62 MW _STDOUT, 16, 44

Bourne shell, 9, 76 MY_MEGAWAVE2, 13
PRIVATE_MEGAWAVE2, 12, 13

argument, see usage
author, 19, 32

EREMADE, 4
CER ’ PUBLIC_MEGAWAVE2, 12
changes, 5 t 1t file f t
Cimago, 19 external type, see file forma
citation, 62, 77 file format, 9, 23, 43
CMLA, 4, 80 JFIFC, 44
compiler, 7, 10, 22, 31, 46 file type, see file format
contact, 80 Fimage, 19
conversion, 23, 27 flag, 27

forum, 80

directories structure, 12

directory tree, 17 function, 20, 33

mw_change_fimage, 20, 28

23;117 mw_getdot_fimage, 21
doc ’17 7 mw_newtab_gray_fimage, 25
lib ’17 ’ mw_plot_fimage, 21
mvzri 17 mwerror, 20, 28
obj,717 FATAL, 20
shell, 17 USAGE, 28
src, 17 group, 8, 33
tmp, 18

distribution package, 11 header

documentation, 77 macro, 76
macro, 77 module, 7, 19, 32
module, 77 hyperlink, 62
print, 78

download, 11, 80 image, 19

Install, 12, 15
email, 80 installation, 11, 16

environment variable, 12 internal type, see structure
LD_LIBRARY_PATH, 14
LD_RUN_PATH, 14
MEGAWAVE2, 13
MW_CHECK_HIDDEN, 17
MW _INCLUDEX11, 14 labo, 19, 33

MW_INCLUDEXm, 14 LaTeX, 9, 15, 23, 77, 78

JPEG library, 14

kernel, 15

81

Index

libjpeg, see JPEG library
libtiff, see TIFF library
license, 16, 79, 80

Linux, 6

macro, 9
main function, 8, 20
MegaWave, see MegaWavel
MegaWavel, 4
MegaWave2, 4
memory type, see structure
module, 4, 7
example
demoheadl, 38
demohead2, 41
demohead3, 42
fadd, 26
fadd1, 19
fadd2, 24
fadd3, 25
fadd4, 25
list, 75
mwcommand, 19, 32

name, 19, 32
needed statement, 32

object, 9

optimization, 24
option, see usage
optional parameter, 27
optional statement, 32

pixel, 21, 24
pointer, 25, 27
PostScript, 23
preprocessor, 4, 6, 7
light, 6
traditional, 6
private MegaWave2, 12
private modules, 8, 12
private.bib, 62, 77
public MegaWave2, 12
public modules, 8, 12
public.bib, 62, 77

registration, 5, 16, 79

MegaWave2 User’s Guide Index

reproducible research, 4
root, 11

soft-publication, 4
structure, 9, 27
system’s macro, 9
cmw?2, 9, 10, 22, 46, 56, 76
cmw?2_all, 31, 48
cmw2macro, 50
cxmw?2, 51
mwarch, 13, 54
mwcleandistrib, 55
mwcmwcheck, 56
mwdep, 57, 78
mwdoc, 9, 16, 58
mwdoclatex, 9, 73, 78
mwdocxdvi, 74
mwecho, 59
mwinstall, 15, 60
mwmakedoc, 52, 78
mwmodbibtex, 62
mwmodinstall, 63
mwmodlist, 64
mwmodsearch, 65
mwnewuser, 18, 66
mwrm, 67
mwrnwordmod, 68
mwsetenv, 12, 69
mwsysmaclist, 9, 70
mwvers, 71
mwwhere, 72
system’s option, 23, 43
-debug, 43
-fsum, 43
-ftype, 43
-help, 44
-proto, 44
-verbose, 44
-vers, 44

TIFF library, 14

url, 62

usage, 34
needed argument, 34, 36
option, 34, 35
optional argument, 34, 36

82

Index MegaWave2 User’s Guide

unused argument, 34, 38
variable argument, 34, 37
user’s macro, 9, 76
user’s option, 23, 43

version, 19, 33, 44
1.x,5
2.x, 5
3., 9

World Wide Web, 62, 80

xdvi, 15
XMegaWave2, 7, 14, 51
xv, 15

Index

83

