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Abstract

Exemplar-based texture synthesis is defined as the process of generating, from an input texture
sample, new texture images that are perceptually equivalent to the input. Efros and Freeman’s
method is a non-parametric patch-based method which computes an output texture image by
quilting together patches taken from the input sample. The main innovation of their work relies
in the stitching technique which significantly reduces the transition effect between patches. In
this paper, we propose a detailed analysis and implementation of their work. We provide a
complete mathematical description of the linear programming problem used for the quilting
step as well as implementation details. Additionally we propose a partially parallel version of
the quilting technique.

Source Code

The source code and an online demonstration of the algorithm described in this article are
accessible at the IPOL web page of this article1.

Keywords: texture synthesis; quilting; patch; linear programming

1 Introduction

Texture synthesis is a classical image processing problem that finds its applications in virtual real-
ity rendering (video games, animation movies, . . . ). Given an input texture image, it consists in
producing output texture images that are both visually similar to and pixel-wise different from the
input, and having possibly a larger size. One can separate texture synthesis algorithms into two cat-
egories, namely statistical constraint approaches and non-parametric patch-based methods, although
“hybrid” algorithms have been proposed recently [15, 13].

Statistical constraint texture synthesis algorithms model the texture based on statistical and/or
perceptual considerations. They generally involve two different steps, one for analysis and one for
synthesis. The analysis step consists in estimating a set of relevant statistics from the input texture
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image. The synthesis step computes an image that satisfies the statistical constraints estimated
during the analysis step. Following the seminal paper of Heeger and Bergen [7, 2], several methods
are based on statistics of wavelet coefficients or more involved multiscale image representations [12,
11, 14]. Another approach initially proposed by van Wijk [16], which consists in randomizing the
Fourier phase of an image, has been extended to an exemplar-based synthesis method in [6, 5]. This
method yields excellent results for micro-textures, which are defined as textures that do not present
salient geometric patterns and that are not constituted of individual discernible objects.

Non-parametric patch-based algorithms attempt at producing a new texture by arranging local
neighborhoods of the input texture in a consistent way. The first methods of this kind are sequential
algorithms that create a new texture one pixel at a time [4, 18]. These algorithms represented a
breakthrough in the field since they are able to reproduce macro-textures with specific geometric
structures, see e.g. the IPOL paper [1]. Along with the method of Liang et al.[10] developed at the
same period, image quilting [3], the algorithm investigated in this paper, computes the new texture
by arranging seamlessly full patches of the input texture. The main innovation of this method is the
procedure to stitch a new patch in the sequentially built output texture to avoid discontinuities as
much as possible. This is achieved by computing an optimal boundary cut between the patch and the
synthesis area thanks to a linear programming optimization (see Section 2 for details). Let us note
that another solution of this “stitching step” is proposed in [9] using graphcuts. Many contributions
have since improved the results of image quilting, at least regarding the computational cost, and
we refer to the state of the art [17] for a more complete survey of this category of texture synthesis
algorithms. Let us also mention the recent paper [8] that discusses and attempts to solve some
limitations of these approaches.

The plan of the paper is as follows. Section 2 describes in detail all the steps of the algorithm
and in particular gives a detailed mathematical description of the linear programming problem for
the computation of the minimum error boundary cut. Section 3 gives implementation details and
discusses a parallelization of the Efros-Freeman algorithm which, to the best of our knowledge, is
a contribution of this paper. Section 4 presents numerous experiments of our implementation of
the Efros-Freeman algorithm. This experimental section shows that this algorithm usually produces
visually good results. However, a set of failure cases shows that the shortcomings of the Efros-Leung
algorithm, that is, garbage growing and verbatim copy [4, 1], are also present in the Efros-Freeman
results, but only at a larger scale.

2 Algorithm Description

In [3] the authors propose a sequential patch-based algorithm to synthesize textures. I0 and Is denote
the input sample and the output texture respectively. The output image Is is constructed patch by
patch in a raster scan order. The goal of each iteration is to fill a patch Pold of Is that is only partially
defined on a region called overlap region (see Figure 1 and Figure 2). To do so a patch Pin of I0 that
matches Pold on the overlap region is randomly selected. An optimal boundary cut between Pold and
Pin is then computed within the overlap region. This optimal boundary cut is used to construct the
new patch Pnew by blending Pold and Pin along the cut (see Figure 3).

The whole image quilting algorithm is described in Algorithm 1 and the remaining of this section
will detail each step of the algorithm, namely the initialization, the patch search procedure to select
Pin, the computation of the minimum error boundary and the blending procedure along the boundary.
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input iteration 10 iteration 87 iteration 217

Figure 1: Three different iterations of the synthesis process are shown. At each iteration a patch is being synthesized. This
patch is represented by the red square for the three cases.

(a) Vertical overlap (b) Horizontal overlap (c) L-shaped overlap

Figure 2: Three overlap cases arises in the raster scan order: vertical overlap for the first row, horizontal overlap for the
first column, and L-shaped overlap everywhere else.

(a) (b) (c) (d)

Figure 3: Quilting a square patch from the input texture into the synthesized texture. (a) sub-part of the synthesized
texture. The red dotted zone shows where the new patch will be quilted. (b) patch to quilt in the red dotted zone shown
in (a). (c) error surface between the patch in (b) and the red dotted zone in (a). The red path shows the minimum error
boundary. (d) the patch in (b) is quilted along the minimum error boundary in the corresponding zone showed in (a).

2.1 Initialization

The first step of the algorithm is to initialize Is. For that a random patch Pin of size wp×wp is taken
from I0 and placed at the top-left corner of Is.
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Algorithm 1 Image Quilting

Input: Sample texture I0, patch size wp, overlap size wo, tolerance parameter ε, output/input size
ratio r
Output: Synthesized texture Is

1: Initialize Is
2: for each patch Pold in Is do
3: Select a compatible patch Pin ∈ I0 using the Patch Selection algorithm (see Algorithm 2)
4: Compute minimum error boundary cut between Pold and Pin (see Algorithm 3)
5: Construct the patch Pnew by blending Pold and Pin along the boundary cut (see Equation (4))
6: Replace Pold with Pnew within Is
7: end for

2.2 Patch Selection

Once the image has been initialized the algorithm synthesizes the remaining patches of Is sequentially
in raster scan order. At each iteration one has to fill a patch Pold of Is that is only defined on an
overlap region of width wo. Note that there are three possible overlap regions: vertical overlap for the
first row, horizontal overlap for the first column, and L-shaped overlap everywhere else (see Figure 2).

To select a patch Pin of the input image I0 one computes the square distance between the overlap
region of the patch Pold of Is and the corresponding regions of all the patches of I0. The minimal
distance dmin is determined and Pin is randomly picked among all patches whose distance to Pold is
lower than (1 + ε)dmin where ε is the tolerance parameter.

To conclude this section let us give a detailed expression of the distance used to compare patches.
A patch of I0 is represented by the position of its top-left corner (m,n) ∈ {0, . . . ,M0 − wp} ×
{0, . . . , N0−wp}. The squared distance image D contains at each position (m,n) the distance between
Pold and the patch from I0 whose top-left corner is (m,n) according to some binary weight Q that
equals one in the overlap region and zero otherwise. More precisely for all (m,n) ∈ {0, . . . ,M0 −
wp} × {0, . . . , N0 − wP}, one has

D(m,n) =

wp−1∑
i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2. (1)

The computation of the squared distance image D is discussed in Section 3.1 and the whole patch
selection procedure is summarized in Algorithm 2.

Algorithm 2 Patch Selection

Input: Sample texture I0, patch under construction Pold, patch size wp, tolerance ε > 0, binary
weight Q defining the overlap region
Output: Patch position (m,n)

1: Compute the squared distance image D (see Equation (1)) containing the distances between the
patch Pold and all patches of I0.

2: dmin ← min
(k,l)

D(k, l).

3: Uniformly draw a patch position (m,n) among the set {(k, l), D(k, l) < (1 + ε)dmin}.

2.3 Minimum Error Boundary Cut

This step of the algorithm is the main contribution of the Efros-Freeman algorithm [3].
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The Patch Search step (see Section 2.2) gives a patch Pin of I0 having coordinates (m,n) that is
similar to the partially defined current patch Pold in their overlap region. We recall that the overlap
regions that arise in the raster scan order are of three types: vertical, horizontal, and L-shaped
overlap. These three cases are illustrated in Figure 2. To get the final patch P one must combine
the patches Pold and Pin. Denoting Q the binary weight for the overlap regions as in the previous
section, then, for any binary image M such that 0 ≤ M(i, j) ≤ Q(i, j), (i, j) ∈ {1, . . . , wp}2, P can
be defined as the combination

Pnew = MPold + (1−M)Pin.

The main idea of Efros and Freeman [3] is looking for a binary shape M where the transition between
Pold and Pnew along the boundary of the shape is minimal. For simplicity, and to be able to use linear
programming, the authors do not allow for any shape, but only for the ones whose boundaries are
simple forward paths from one end to the other of the overlap region. This results in two pieces
of image that are sewn together along some general boundary path, hence the algorithm name
“quilting”. In the remaining of this section, we describe in detail the computation of the minimum
error boundary cut for the three overlap cases, starting with the vertical and horizontal cases.

2.3.1 Connected Paths and Boundary Error

In the following, we call a path of length ` ≥ 1 in {0, . . . , wp − 1}2 any ordered sequence γ =
(γ0, γ1, . . . , γ`−1) of 8-connected pixels γk ∈ {0, . . . , wp − 1}2, that is, for all k ∈ {0, . . . , ` − 2},
max(|γ1

k+1−γ1
k|, |γ2

k+1−γ2
k|) = 1 (for convenience, within this section the first and second coordinates

of a pixel γk are denoted by γ1
k and γ2

k).
Let us recall that we use matrix coordinates for the pixels. Hence a path γ of length ` is said to

be vertical if for all k ∈ {0, . . . , ` − 2}, γ1
k+1 − γ1

k = −1 (vertical paths are oriented from bottom to
top), and horizontal if for all k ∈ {0, . . . , `− 2}, γ2

k+1 − γ2
k = −1 (horizontal paths are oriented from

right to left).
Denoting by e(i, j) = (Pnew(i, j)−Pold(i, j))2 the squared difference between the two patches Pold

and Pnew, the boundary error of a path γ of length ` is defined by

E(γ) =
`−1∑
k=0

e(γk).

2.3.2 Vertical Boundary Cuts

In this section we explain how the optimal boundary between Pold and Pnew is defined and computed
in the case of vertical overlap, that is when the overlap region is the rectangle {0, . . . , wp − 1} ×
{0, . . . , wo − 1}.

The optimal boundary is defined as the vertical path γ that minimizes the boundary error E(γ)
while joining both ends of the overlap regions. More precisely, define the admissible vertical paths
as

Γv = {γ = (γ0, . . . , γwp−1), ∀k, γ1
k = wp − 1− k and γ2

k ∈ {0, . . . , wo − 1}},

(one notices that paths of γ ∈ Γv are indeed vertical since γ1
k+1 − γ1

k = −1). Then an optimal
boundary is defined as any solution of the optimization problem

min
γ∈Γv

E(γ). (2)

Problem (2) is solved using dynamic programming. This is possible because Problem (2) verifies
the principle of optimality: if (γ0, . . . , γwp−1) is an optimal solution of Problem (2), then, for all
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0 ≤ r ≤ wp − 1, the subpath (γ0, . . . , γr−1) is an optimal vertical path to reach the r-th point γr−1

starting from the bottom of the overlap region.
Let us now discuss in detail the dynamic programming method to solve Problem (2). For all

points (i, j) ∈ {0, . . . , wp− 1}× {0, . . . , wo− 1}, denote by Γ
(i,j)
v the set of vertical paths γ that start

at the bottom side of the overlap region and end at the point (i, j), that is

Γ(i,j)
v = {γ = (γ0, . . . , γwp−1−i), ∀k, γ1

k = wp − 1− k, γ2
k ∈ {0, . . . , wo − 1}, and γwp−1−i = (i, j)}.

Now, for all points (i, j) ∈ {0, . . . , wp−1}×{0, . . . , wo−1}, define Ev(i, j) as the minimal cumulative
vertical error to reach (i, j) starting from the bottom side, that is,

Ev(i, j) = min
γ∈Γ

(i,j)
v

E(γ).

Then, since

Γv =
⋃

j∈{0,...,wo−1}

Γ(0,j)
v ,

one has
min
γ∈Γv

E(γ) = min
j∈{0,...,wo−1}

Ev(0, j).

Now, remark that the last-but-one point of an optimal vertical path that ends at (i, j) is one of the
(at most) three points below (i, j), namely the points (i+ 1, j− 1), (i+ 1, j), (i+ 1, j+ 1) (there can
be only two neighboring points if (i, j) is at the border, that is, if j = 0 or j = wo − 1). Hence, for
all i ∈ {0, . . . , wp − 2}, one has

Ev(i, j) = e(i, j) + min(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), (3)

where by convention, if one of the index j − 1 or j + 1 is not a valid index, the corresponding term
Ev(i+1, j−1) or Ev(i+1, j+1) is discarded from the minimum. Besides, for the last line i = wp−1,
one simply has Ev(wp − 1, j) = e(wp − 1, j) since the paths are only made of one pixel. Hence the
dynamic programming procedure for solving Problem (2) is to compute the costs Ev(i, j) line by
line from bottom to top using Equation (3) recursively, and then search for the minimal value of the
first line j∗ = argminj Ev(0, j). The full optimal path γ can then be traced back starting from this
coordinate (0, j∗) = (γ1

wp−1, γ
2
wp−1). More precisely, if (i, j) are the coordinates of the point γwp−1−i

of the optimal path γ, then its preceding point γwp−1−(i+1) is given by

γwp−1−(i+1) = argmin(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)).

In practice one stores the matrix Tv(i, j) = argmin(Ev(i+ 1, j−1), Ev(i+ 1, j), Ev(i+ 1, j+ 1)) while
computing the vertical cumulative error Ev given by Equation (3) in order to trace back the path
without additional computation since for i = wp − 2 to 0, γi = Tv(γi+1).

2.3.3 Horizontal Boundary Cuts

The case of horizontal overlap is just the symmetric case of vertical overlap one. Still let us introduce
the notation that will be necessary for dealing with the L-shaped overlap case. One defines the set
of horizontal paths as

Γh = {γ = (γ0, . . . , γwp−1), ∀k, γ2
k = wp − 1− k and γ1

k ∈ {0, . . . , wo − 1}},

and for all points (i, j) ∈ {0, . . . , wo − 1} × {0, . . . , wp − 1}, one defines

Γ
(i,j)
h = {γ = (γ0, . . . , γwp−1−j), ∀k, γ2

k = wp − 1− k, γ1
k ∈ {0, . . . , wo − 1}, and γwp−1−j = (i, j)},
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the set of paths that start at the right side of the overlap region and end at (i, j), as well as

Eh(i, j) = min
γ∈Γ

(i,j)
h

E(γ),

the minimal cumulative horizontal error to reach (i, j) starting from the right side of the overlap
region. Then Eh(i, wp − 1) = e(i, wp − 1), and for all j ∈ {0, . . . , wp − 2}, one has the recursive
relation

Eh(i, j) = min(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)),

which enables to compute Eh(i, j) for all (i, j) ∈ {0, . . . , wo − 1} × {0, . . . , wp − 1}. Since

min
γ∈Γh

E(γ) = min
i∈{0,...,wo−1}

Eh(i, 0)

the end point of the optimal horizontal path is (i∗, 0) where i∗ = argminiEh(i, 0) and the path can
be traced back thanks to the matrix Th(i, j) = argmin(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)).

2.3.4 L-shaped Boundary Cuts

The case of L-shaped overlap regions is slightly more complex than the vertical and horizontal cases
since the geometry of the L-shape does not allow for a clear ordering of the pixels of the path. The
original paper [3] only mentions that, in the L-shaped overlap case, “the minimal paths meet in the
middle and the overall minimum is chosen for the cut”. We propose below a rigorous interpretation
of this sentence.

A separating path will start at the bottom side of the L-shape (that is, the points (i, j) with
i = wp − 1 and j ∈ {0, . . . , wo − 1}) and end at the right side of the L-shaped (that is, the points
(i, j) with i ∈ {0, . . . , wo − 1} and j = wp − 1). To restrict the geometry of admissible paths (and
allowing for dynamic programming), it is further required that an L-shaped path has to meet at some
diagonal point (i, i), i ∈ {0, . . . , wo − 1}, that the first part from the bottom side to this diagonal
point (i, i) is a vertical path, and that the remaining part from the diagonal point (i, i) to the right
side is a reversed horizontal path. More formally, for all indexes i ∈ {0, . . . , wo − 1}, one defines

ΓiL = {γ = (γ0, . . . , γ2(wp−i)−1), (γ0, . . . , γwp−i−1) ∈ Γ(i,i)
v and (γ2(wp−i)−1, . . . , γwp−i−1) ∈ Γ

(i,i)
h },

and for all γ ∈ ΓiL we denote by γv and γh its associated vertical and horizontal paths of Γ
(i,i)
v and

Γ
(i,i)
h respectively. The set of the admissible L-shaped boundaries ΓL is then defined as the disjoint

union of the sets ΓiL, that is,

ΓL =

w0−1⋃
i=0

ΓiL.

As before, we search for an optimal L-shaped boundary cut γ ∈ ΓL having minimal boundary error

E(γ) =

`(γ)−1∑
k=0

e(γk),

where `(γ) is the length of the path γ (which is equal to 2(wp − i) − 1 if γ ∈ ΓiL). The optimal
L-shaped boundary can be found in splitting the above sum into a vertical part and an horizontal
part, since for all γ ∈ ΓiL one has

E(γ) = E(γv) + E(γh)− e(i, i).
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Hence one has

min
γ∈ΓL

E(γ) = min
i∈{0,...,wo−1}

min
γ∈Γi

L

E(γ)

= min
i∈{0,...,wo−1}

min
γ∈Γi

L

E(γh) + E(γv)− e(i, i)

= min
i∈{0,...,wo−1}

[(
min

γv∈Γ
(i,i)
v

E(γv)

)
+

(
min

γh∈Γ
(i,i)
h

E(γh)

)
− e(i, i)

]
= min

i∈{0,...,wo−1}
Ev(i, i) + Eh(i, i)− e(i, i),

where Ev and Eh are the vertical and horizontal cumulative errors defined in the previous sections.
Hence,

min
γ∈ΓL

E(γ) = min
i∈{0,...,wo−1}

Ev(i, i) + Eh(i, i)− e(i, i).

The above equation enables us to determine the optimal position (i∗, i∗) on the diagonal of the
optimal path γ once the matrices Ev and Eh have been computed recursively. We can then trace
back the vertical part γv and the horizontal part γh of the optimal path γ using the matrices Tv and
Th. Let us remark that the “overall minimum” evoked in [3] must not be interpreted as the minimum
of Ev(i, i) + Eh(i, i) but the minimum of Ev(i, i) + Eh(i, i)− e(i, i).

2.4 Blending along the Cut

This is the last step of an iteration. Its goal is to construct the new patch Pnew by blending Pold and
Pin using the previously computed boundary cut. The boundary cut defines a binary mask M that
equals one on the left and/or top of the cut and zero otherwise. The patch Pnew can be defined as

Pnew = MPold + (1−M)Pin. (4)

We noticed that the Matlab implementation of the authors proposes an optional smoothing of the
binary mask presumably to avoid noticeable transitions along the cut. We implemented this option
but we did not observe noticeable improvements. Since it is not discussed in the original paper we
do not use it for the experimental results of this paper.

3 Implementation

3.1 Computing Patch Distances with FFT

In this section we explicit an algorithm to compute the squared distance between a patch Pold and all
the patches of the input texture I0 using the Fast Fourier Transform (FFT), that is, to compute the
squared distance image D of Equation (1) involved in the patch search algorithm (see Algorithm 2).
To the best of our knowledge, regarding texture synthesis this acceleration was first discussed by
Kwatra et al. [9]. Recall that we consider a patch Pold of size wp×wp and that I0 is of size M0×N0.
Hence the naive summation to compute

D(m,n) =

wp−1∑
i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2,

for all (m,n) ∈ {0, . . . ,M0−wp}×{0, . . . , N0−wp} requires around w2
pM0N0 operations with wp = 40

pixels as a typical value. An important asset of the proposed FFT-based implementation is that the

8
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Algorithm 3 Minimum Error Boundary Cut

Input: Output texture Is, patch Pold (from Is), patch Pin (from I0), patch size wp, overlap size wo
Output: Boundary cut γ

1: Compute the squared difference e(i, j) = (Pin(i, j)− Pold(i, j))2

2: switch (overlap type)
3: case vertical:
4: Compute the minimal cumulative vertical error Ev:
5: Ev(wp − 1, j) = e(wp − 1, j), j ∈ {0, . . . , wo − 1}
6: for i = wp − 2 to 0 do
7: Ev(i, j) = e(i, j) + min(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), j ∈ {0, . . . , wo − 1}
8: Tv(i, j) = argmin(Ev(i+ 1, j − 1), Ev(i+ 1, j), Ev(i+ 1, j + 1)), j ∈ {0, . . . , wo − 1}
9: end for

10: Determine j∗ = argminj Ev(0, j)
11: Trace back the path γ starting at γwp−1 = (0, j∗) using Tv: for i = wp − 2 to 0, γi = Tv(γi+1)
12: case horizontal:
13: Compute the minimal cumulative horizontal error Eh:
14: Eh(i, wp − 1) = e(i, wp − 1), i ∈ {0, . . . , wo − 1}
15: for j = wp − 2 to 0 do
16: Eh(i, j) = e(i, j) + min(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)), i ∈ {0, . . . , wo − 1}
17: Th(i, j) = argmin(Eh(i− 1, j + 1), Eh(i, j + 1), Eh(i+ 1, j + 1)), i ∈ {0, . . . , wo − 1}
18: end for
19: Determine i∗ = argminiEh(i, 0)
20: Trace back the path γ starting at γwp−1 = (i∗, 0) using Th: for j = wp − 2 to 0, γj = Th(γj+1)
21: case L-shaped:
22: Compute the minimal cumulative vertical error Ev as in the vertical case
23: Compute the minimal cumulative horizontal error Eh as in the horizontal case
24: Determine i∗ = argmini(Ev(i, i) + Eh(i, i)− e(i, i)) (with i ∈ {0, . . . , wo − 1})
25: Trace the vertical part of γ starting at (i∗, i∗) using Tv: for i = wp− i∗− 2 to 0, γi = Tv(γi+1)
26: Trace the horizontal part of γ starting at (i∗, i∗) using Th: for j = wp − i∗ to 2(wp − i∗) − 1,

γj = Th(γj−1)
27: end switch

computational cost is limited to two FFT calls for images of size M0 ×N0 and is thus independent
of the patch width wp.

Let us first recall some notation. A patch of size wp × wp within an image is represented by its
top-left corner, hence all admissible patches of I0 have (m,n)-coordinates in the set {0, . . . ,M0 −
wp} × {0, . . . , N0 − wp}.

Discrete Fourier Transform. Given any image V ∈ RM0×N0 we denote by F(V ) = V̂ the discrete
Fourier transform of V and F−1(V ) = V̌ the inverse discrete Fourier transform of V , defined by

V̂ (k, l) =
1

M0N0

M0−1∑
m=0

N0−1∑
n=0

V (m,n)e
−2iπ

(
km
M0

+ nl
N0

)
and V̌ (k, l) =

M0−1∑
m=0

N0−1∑
n=0

V (m,n)e
2iπ

(
km
M0

+ nl
N0

)
.

9
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Convolution Product. Denote by V ∗W the convolution product between V and W , that is,

V ∗W (m,n) =

M0−1∑
k=0

N0−1∑
l=0

V (k, l)W (m− k, n− l),

where the indexes (m − k, n − l) are understood modulo (M0, N0). With these conventions for the
DFT, one has F(V ∗W ) = M0N0V̂ Ŵ , where the multiplication between images is the component-
wise product. However, recall that the FFTW library computes the Fourier transform without
normalization. Hence the operators that are computed are respectively M0N0F for the forward
transform and F−1 for the backward transform. Hence we have

V ∗W = F−1(F(V ∗W )) =
1

M0N0

F−1(M0N0F(V )M0N0F(W )).

This means that after multiplying the two FFTW forward transforms and performing the backward
inverse transform, one has to normalize dividing by the size of the images.

Cross-correlation. Let us denote by Γ(V,W ) the cross-correlation between two images,

Γ(V,W )(m,n) =

M0−1∑
k=0

N0−1∑
l=0

V (k, l)W (m+ k, n+ l).

Note also Ṽ the symmetric of V with respect to the origin, that is, Ṽ (m,n) = V (−m,−n). Note

that one has Γ(W,V )(m,n) = Γ(V,W )(−m,−n), that is, Γ(W,V ) = ˜Γ(V,W ) and that the cross-
correlation is simply a convolution between the symmetric version of the first image and the second
image, that is,

Γ(V,W )(m,n) = Ṽ ∗W (m,n) = V ∗ W̃ (−m,−n).

Hence the computational cost for a cross-correlation image is the same that for a convolution product,
that is three FFT calls.

We need to compute the squared distance between a patch Pold and all the patches of I0 according
to some binary weight Q that represents the overlap region (that is a horizontal, vertical, or L-shaped
mask). More precisely for all (m,n) ∈ {0, . . . ,M0 − wp} × {0, . . . , N0 − wp}, we want to compute

D(m,n) =

wp−1∑
i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2.

Let us denote by Pext and Qext the extensions of Pold and Q into images of size M0 × N0 by filling
the domain with 0-valued pixels, that is

Pext(m,n) =

{
Pold(m,n) if (m,n) ∈ {0, . . . , wp − 1} × {0, . . . , wp − 1},
0 otherwise,

10
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and similarly for Qext. Then one has

D(m,n) =

wp−1∑
i,j=0

Q(i, j)(Pold(i, j)− I0(m+ i, n+ j))2

=

M0−1∑
k=0

N0−1∑
l=0

Qext(k, l)(Pext(k, l)− I0(m+ k, n+ l))2

=

M0−1∑
k=0

N0−1∑
l=0

(
Qext(k, l)Pext(k, l)

2 − 2Qext(k, l)Pext(k, l)I0(m+ k, n+ l) +Qext(k, l)I0(m+ k, n+ l)2
)

=

wp−1∑
i,j=0

Q(i, j)Pold(i, j)2 − 2Γ(QextPext, I0)(m,n) + Γ(Qext, I
2
0 )(m,n),

where the multiplications QextPext and I2
0 are component-wise.

Within our procedure, we will compare a patch Pold that is taken from the output image that
is only partially defined, and the binary weight Q representing the overlap region. Hence, if all the
undefined pixels of the output patch Pold are set to 0 (by initializing Is to 0), one has

∀(i, j) ∈ {0, wp − 1}2, Q(i, j)Pold(i, j) = Pold(i, j).

Consequently,
wp−1∑
i,j=0

Q(i, j)Pold(i, j)2 =

wp−1∑
i,j=0

Pold(i, j)2 = ‖Pold‖2
2,

and QextPext = Pext, and thus Γ(QextPext, I0) = Γ(Pext, I0). Hence, the binary mask Q is only
influential when computing Γ(Qext, I

2
0 ), a computation that is done just once at the beginning of the

procedure since it does not depend on Pold.

In the end, the image D is simply given by

D = ‖Pold‖2
2 − 2Γ(Pext, I0) + Γ(Qext, I

2
0 ), (5)

where the last image Γ(Qext, I
2
0 ) is computed once before running the algorithm and stored in memory.

Hence the cost for computing D is only three FFT calls for the computation of the cross-correlation
Γ(Pext, I0), and is even reduced to two FFT calls by storing the DFT of I0.

Note that the image D is defined for all (m,n) ∈ {0, . . . ,M0 − 1} × {0, . . . , N0 − 1}, but the
squared distances for (m,n)-coordinates outside {0, . . . ,M0 −wp} × {0, . . . , N0 −wp} correspond to
patches of size wp × wp that are defined by periodic boundary conditions and thus those patches
must be discarded when searching for the minimal distance.

Minimum distance. Theoretically the results of the distance computation using the sum square
differences or the FFT are equal. But in practice, the computation using the FFT is subject to
rounding errors. Especially if there is a patch such that D(m,n) = 0, when adding positive and
negative terms in Equation (5) the result might be negative due to numerical errors. This rounding
error problem leads to a negative minimal squared distance dmin, which leads to errors in the patch
search algorithm (Algorithm 2) since then none of patches satisfy the condition D(m,n) < (1+ε)dmin.
To avoid this, all squared distances D(m,n) smaller than 1 are set to D(m,n) = 1 (the value 1 is
smallest distance-value greater than 0).

11
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3.2 Parallelization

Although the Efros-Freeman algorithm was presented as a purely sequential algorithm, we found
out that the procedure can be partially parallelized, and thus the algorithm significantly accelerated
when running on multi-core platforms.

In general, non-parametric patch based methods can not be completely parallelized because the
sequential assignment of patches is strongly dependent of the previous synthesis steps. Nevertheless,
in the case of the quilting method, a new patch assignment is only correlated to some previous
synthesis steps and not to all of them. To illustrate this let us consider the first few steps of the
algorithm. The first step of the algorithm adds the seed patch and the second step adds a second
patch on the right. When adding the third patch, the first patch of the second row can be created
at the same time since it only depends on the one that is on top of it and on its top-right. More
generally the synthesis of a new row of patches can be started as soon as two patches of the previous
row have been synthesized. This procedure is illustrated in Figure 4.

Let us discuss the acceleration induced by the parallelization. Suppose we synthesize an image
Is made of Nr × Nc patches where Nr is the number patch rows and Nc is the number of patch
columns. Without the parallelization the number of iterations Nit is Nit = NrNc. When parallelizing
the number of iterations Nit is reduced to 2(Nr − 1) +Nc. This parallelization is especially effective
if one has as many processors available as patches to synthesize simultaneously in one iteration.
The maximal number of patches to synthesize simultaneously is equal to min (Nr,

⌊
Nc+1

2

⌋
), where

bxc = max(n ∈ N, n ≤ x), since within an iteration there is at most one new patch per row and one
new patch per pair of columns.

The parallel version of the quilting algorithm is summarized in Algorithm 4. Let us notice that
for this parallelization to be valid the overlap size must satisfy wo ≤ wp/2 which is always the case
in practice.

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5

iteration 6 iteration 7 iteration 8 iteration 9 iteration Nit

Figure 4: Evolution of the synthesized image with the parallelization. New patches from two subsequent iterations are added
simultaneously.
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Algorithm 4 Parallelization

Input: Sample texture I0, Nr is the number patch rows, Nc is the number of patch columns
Output: Synthesized texture Is

1: Nit ← 2(Nr − 1) +Nc

2: Initialize Is
3: for k = 1 to Nit − 1 do
4: for i = max(0, bk−Nc+1

2
c) to min(Nr − 1, bk

2
c) do

5: Is ← synthesize a new patch at position
(
i(wp − wo), (k − 2i)(wp − wo)

)  This loop is
run in parallel

6: end for
7: end for

4 Experiments

In this section texture synthesis results are shown using the algorithm described previously [3]. Two
aspects of this method are emphasized. On the one hand the visual quality of the result and on
the other hand the tendency of the method to verbatim copy parts of the input sample. For this
we represent each result as shown in Figure 5: the input sample I0, the color map, the synthesized
texture Is and the synthesis map. The color map is an image of size equal to the size of I0 and
each of its pixels is assigned a different color. This allows to visualize each position of I0 with
the corresponding color of the color map. The synthesis map shows for each synthesized patch its
initial position in the texture sample. It allows to identify exactly the verbatim copy regions which
correspond to the continuous color areas of the synthesis map. Each pixel p

′
i in Is is assigned a pixel

pj from I0. The synthesis map at position p
′
i is mapped to the value of the color map at position pj.

Figure 5: Results representation. From left to right: texture sample, position map, synthesized image and synthesis map.
The synthesis map shows for each synthesized patch its position in the texture sample. It allows then to identify exactly
the verbatim copy regions (continuous color areas of the map).

Let us discuss the influence of the parameters. There are three of them: the patch size wp, the
overlap size wo and the tolerance parameter ε. The overlap size is expressed as the proportion with
respect to the patch size. That is wo = 0.25 implicitly means wo = 0.25wp.

In Figures 6 and 7 successful results are shown for different types of textures. For each example the
patch size wp is adapted taking one of the following values {10, 20, 40, 80}. The remaining parameters
are fixed to wo = 0.25 and ε = 0.1. One can notice that for some texture samples, for example the
brick wall in Figure 6 and the texture samples of the last row in Figure 7, even though the results
are visually satisfying they are made of large parts of the input sample.

In Figure 8 three failure cases are shown. The first one is due to the patch size. When this is
too small, in particular for macro textures, the algorithm fails to recover the details of the different
scales as can be seen in the first row of Figure 8. The second failure is the verbatim copy effect.
For some texture samples the verbatim copy zones are visually noticeable and unnatural. This is
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illustrated in the second row of Figure 8. The last failure case is the “growing garbage” drawback,
which occurs when the method is stuck in a region of the input sample repeating it on a large part
of the output. This is due to the local aspect of the algorithm and it is more noticeable when the
texture examples are not stationary. This is also shown in Figure 8 in the last row. It is important
to notice that the two last failure cases are more noticeable when the output size - input size ratio
is higher than two.

Influence of the patch size

First of all the patch size influence is analyzed and these results are shown in Figure 9. For this,
wo = 0.25 and ε = 0.1 are fixed and the synthesis results for wp ∈ {10, 20, 40, 80} are compared. This
parameter clearly depends on the input sample. In general, macro textures have details at different
scales. If the patch size chosen is not able to capture them all then the synthesis fails. A second
observation is that the larger the patch size is the larger the verbatim copy zones are. For smaller
patches this effect is reduced, since more “similar” patches are available in the patch search step and
then the set of candidate patches is larger, allowing more variation.

Influence of the overlap size

The overlap size is an important parameter in this method. To analyze its influence wp = 40 and
ε = 0.1 are fixed and the results for wo ∈ {0.10, 0.25, 0.5} are compared. The general conclusion
is that larger overlap sizes often give a seamless transition between patches but are more prone to
growing garbage for some texture samples as can be seen in the two first examples in Figure 10 for
wo = 0.50. On the other hand if wo is low the set of candidate patches is bigger and thus reduces
the verbatim copy effect at the cost of decreasing the visual quality of the results as can be seen in
the third example in Figure 10.

Influence of the tolerance parameter

This last parameter is directly related to the verbatim copy effect. For this analysis wp = 40 and
wo = 0.25 are fixed and the results for ε ∈ {0.05, 0.1, 0.3, 0.5, 0.7} are compared. Increasing ε implies
having more candidate patches for the synthesis. This allows more variation when choosing a patch
in the image and this is directly seen in the synthesis maps of the examples in Figure 11 where for
ε ∈ {0.5, 0.7} the patches are taken more “randomly” from the input sample thus reducing the size of
the verbatim copy regions. For some texture examples the visual quality of the result can decrease.
On the other hand, as expected, low values of ε lead to very large verbatim copy areas.

5 Conclusion

In this paper we analyzed in detail Efros and Freeman’s texture synthesis algorithm [3]. Extensive
numerical experiments have been proposed to illustrate the performance of the method as well as
the influence of its parameters. We conclude from these experiments that, in general, for the correct
set of parameters, the visual results are satisfying at the cost of verbatim copying large parts of the
input textures that might be visually disturbing. This is a common drawback of Efros and Leung’s
method [4]. Another issue that arises in [3] is the garbage growing effect. This is especially apparent
when the input texture is not stationary. We also noticed that it is related to the raster scan order
used to synthesize the image, which propagates the errors. All these drawbacks are in general more
apparent when synthesizing an image significantly larger than the input. Hence, due to the raster
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wp = 20, r = 2 wp = 20, r = 2 wp = 40, r = 2

wp = 20, r = 2 wp = 20, r = 2 wp = 40, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 80, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 80, r = 2

wp = 40, r = 2 wp = 40, r = 2 wp = 80, r = 2

wp = 40, r = 2 wp = 40, r = 2 wp = 80, r = 2

Figure 6: Successful results of Efros and Freeman image quilting algorithms. The small images represent the example texture
and the big ones the corresponding synthesis result. Each row of examples is followed by a row containing the corresponding
color and synthesis maps. For all the examples the patch size wp and the ratio r used is indicated. The overlap size is fixed
to wo = 0.25 and the tolerance error to ε = 0.1.
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wp = 20, r = 2 wp = 40, r = 2 wp = 40, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 40, r = 2

wp = 40, r = 2 wp = 40, r = 2 wp = 80, r = 2

wp = 40, r = 2 wp = 40, r = 2 wp = 80, r = 2

Figure 7: Successful results of Efros and Freeman image quilting algorithms. The small images represent the example texture
and the big ones the corresponding synthesis result. Each row of examples is followed by a row containing the corresponding
color and synthesis maps. For all the examples the patch size wp and the ratio r used is indicated. The overlap size is fixed
to wo = 0.25 and the tolerance error to ε = 0.1.
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wp = 20, r = 2 wp = 40, r = 2 wp = 10, r = 2

wp = 20, r = 2 wp = 40, r = 2 wp = 10, r = 2

wp = 80, r = 4 wp = 80, r = 4 wp = 40, r = 2

wp = 80, r = 4 wp = 80, r = 4 wp = 40, r = 2

wp = 20, r = 4 wp = 20, r = 4 wp = 40, r = 4

wp = 20, r = 4 wp = 20, r = 4 wp = 40, r = 4

Figure 8: Failures of Efros and Freeman image quilting algorithms. The small images represent the example texture and
the big ones the corresponding synthesis result. The examples in the first row show failures related to an incorrect patch
size. The examples in the second row show the case of verbatim copy failures. The examples in the the third row show the
case of growing garbage. For all the examples the patch size wp and the ratio r used is indicated.
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input wp = 10 wp = 20 wp = 40 wp = 80

Figure 9: Patch size influence. Each pair of rows shows from left to right the input, the synthesis results for wp =
10, 20, 40, 80 and the corresponding color and synthesis maps. For all the examples wo = 0.25 and ε = 0.1.
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input wo = 0.10 wo = 0.25 wo = 0.50

Figure 10: Overlap size influence. Each pair of rows shows from left to right the input, the synthesis results for wo =
0.1, 0.25, 0.5 and the corresponding color and synthesis maps. For all the examples wp = 40 and ε = 0.1.
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input ε = 0.05 ε = 0.1 ε = 0.3 ε = 0.5 ε = 0.7

Figure 11: Tolerance error influence. Each couple of rows shows from left to right the input, the synthesis results for
ε = 0.05, 0.1, 0.3, 0.5, 0.7 and the corresponding color and synthesis maps. For all the examples wp = 40 and wo = 0.25.
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scan order, the quilting algorithm is not suitable to generate very large texture images since the
quality tends to decrease with the distance to the top left corner of the image.

We provide with this analysis a strategy to partially parallelize the method who was initially
introduced as essentially sequential. This allows a significant speed up when running with multi-core
processors.

Image Credits

Images CC-BY by the authors except:

By Eero P. Simoncelli2.
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From IPOL archive for article [5].

Fabric.0013, Food.0001 and Tile.0007 from the VisTex database3.
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[11] G. Peyré, Texture synthesis with grouplets, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 4 (2010), pp. 733–746. https://doi.org/10.1109/TPAMI.2009.54.

[12] J. Portilla and E. P. Simoncelli, A parametric texture model based on joint statistics of
complex wavelet coefficients, International Journal on Computer Vision, 40 (2000), pp. 49–71.
https://doi.org/10.1023/A:1026553619983.

[13] L. Raad, A. Desolneux, and J.-M. Morel, Locally Gaussian exemplar based texture syn-
thesis, in Proceedings of IEEE International Conference on Image Processing (ICIP), 2014,
pp. 4667–4671. https://doi.org/10.1109/ICIP.2014.7025946.
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