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Is Repeatability an Unbiased Criterion for Ranking Feature Detectors?∗
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Abstract. Most computer vision applications rely on algorithms finding local correspondences between dif-
ferent images. These algorithms detect and compare stable local invariant descriptors centered at
scale-invariant keypoints. Because of the importance of the problem, new keypoint detectors and
descriptors are constantly being proposed, each one claiming to perform better than the preceding
ones. This raises the question of a fair comparison between very diverse methods. This evaluation
has been based mainly on a repeatability criterion of the keypoints under a series of image perturba-
tions (blur, illumination, noise, rotations, homotheties, homographies, etc). In this paper, we argue
that the classic repeatability criterion is biased favoring algorithms producing redundant overlapped
detections. To overcome this bias, we propose a variant of the repeatability rate taking into account
the descriptors overlap. We apply this variant to revisit the popular benchmark by [Mikolajczyk et
al. Int. J. Comput. Vis., 65 (2005), pp. 43–72], comparing several classic and recently introduced
feature detectors. Experimental evidence shows that the hierarchy of these feature detectors is
severely disrupted by the amended comparator.
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invariant feature transform (SIFT)
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1. Introduction. Local stable features are the cornerstone of many image processing and
computer vision applications such as image registration [18, 38], camera calibration [15], im-
age stitching [16], three-dimensional (3D) reconstruction [1], object recognition [14, 11, 2, 42],
or visual tracking [31, 43]. The seminal SIFT method (scale invariant feature transform)
introduced by Lowe in 1999 and 2004 [23, 24] sparked an explosion of local keypoints detec-
tors/descriptors seeking discrimination and invariance to a specific group of image transfor-
mations [39].

Ideally, one would like to detect keypoints that are stable to image noise, illumination
changes, and geometric transforms such as scale changes, affinities, homographies, perspec-
tive changes, or nonrigid deformations. Complementarily, the detected features should provide
information as diverse as possible. Detections should, for example, be well distributed through-
out the entire image, extracting information from all image regions and from boundary features
of all kinds (e.g., textures, corners, blobs). Hence, there is a variety of detectors/descriptors
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built on different principles and having different requirements. While the SIFT method and
its similar competitors [3, 30, 25] detect blob-like structure in a multiscale image decomposi-
tion, other approaches [5, 30, 35, 13, 36, 20] explicitly detect corners or junctions at different
scales. As opposed to interest point detectors, interest region detectors [40, 41, 19, 6] extract
the invariant salient regions of an image based on its topographic map. To fairly compare the
very different feature detectors it is fundamental to have a rigorous evaluation protocol.

The repeatability rate measures the detector’s ability to identify the same features (i.e.,
repeated detections) despite variations in the viewing conditions. Defined as the ratio between
the number of keypoints simultaneously present in all the images of the series (repeated
keypoints) over the total number of detections, it can be seen as a measure of the detector’s
efficiency. Indeed, the repeatability rate incorporates two struggling quality criteria: the
number of repeated detections (i.e., potential correspondences) should be maximized while
the total number of detections should be minimized since the complexity of the matching
grows with the square of the number of detections.

Interest point detectors can also be indirectly evaluated through a particular application.
In [29], the authors propose to evaluate detector-descriptor combinations in an image match-
ing/recognition scenario. Although this approach can lead to very practical observations, the
conclusions about the keypoints stability is intertwined with the descriptor’s discrimination
ability.

In this work, we show that the repeatability criterion suffers from a systematic bias: it
favors redundant and overlapped detections. This has serious consequences, as evenly dis-
tributed and independent detections are crucial in image matching applications. The concen-
tration of many keypoints in a few image regions is generally not helpful, no matter how robust
and repeatable they may be. To better measure the detectors redundancy, we introduce a
modified repeatability criterion. We consider the area actually covered by the descriptor and
we evaluate the descriptor overlap as a measure of redundancy.

A preliminary short version of this work was submitted to a conference [33]. The present
version incorporates the entire experimental analysis. The remainder of the article is organized
as follows. Section 2 describes the repeatability criterion, discusses its variants, and illustrates
how algorithms producing redundant detections may have a good performance according to
this traditional quality measure. In section 3 we introduce a correction to the repeatability
criterion that overcomes this bias, by accounting for the descriptor overlap. Section 4 re-
views twelve state-of-the-art feature detectors, and details the region involved in the feature
extraction for each of the analyzed methods. This extracted region will be the key ingredient
for the proposed overlap measure. Comparative performance tables and maps gathered in
section 5 show that the hierarchy of detectors is drastically altered by the new repeatability
criterion. This result is further confirmed by analyzing the detection/matching performance
using the same normalized descriptor for all the detectors. Conclusions are finally summarized
in section 6.

2. The repeatability criterion and its bias.

2.1. Definition of the repeatability criterion. Consider a pair of images ua(x), ub(x)
defined for x ∈ Ω ⊂ R

2 and related by a planar homography H, that is, ub = ua ◦ H. The
detector repeatability rate for the pair (ua, ub) is defined as the ratio between the numberD
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2560 IVES REY-OTERO AND MAURICIO DELBRACIO

of detections simultaneously present in both images, i.e., repeated detections, and the total
number of detections in the region covered by both images.

In the repeatability framework, a detection generally consists of an elliptical region, de-
noted R(x,Σ), parametrized by its center x and a 2× 2 positive-definite matrix Σ,

R(x,Σ) =
{
x′ ∈ Ω | (x′ − x)TΣ−1(x′ − x) ≤ 1

}
.

A pair of detections (elliptical regions R(xa,Σa) and R(xb,Σb)) from images ua(x) and ub(x)
will be considered repeated if

(2.1) eoverlap = 1− |R(xa,Σa) ∩R(xba,Σba)|
|R(xa,Σa) ∪R(xba,Σba)| ≤ εmax

overlap,

where eoverlap is the overlap error, xba = Hxb, Σba = AΣbA
T represents the reprojection of

the ellipse R(xb,Σb) from image ub into the image ua, and A is the local affine approximation
of the homography H.

The union and intersection of the detected regions are examined on the reference image
ua(x) by projecting the detection on the image ub into the image ua. The union covers an
area denoted by |R(xa,Σa) ∪R(xba,Σba)| while |R(xa,Σa) ∩R(xba,Σba)| denotes the area of
their intersection. The parameter εmax

overlap is the maximum overlap error tolerated. In most
published benchmarks it is set to εmax

overlap = 0.40 [28, 30, 25].

Figure 1. Illustration of the repeatability criterion. Detection R(xb,Σb) on image ub is reprojected on the
reference image ua. If the overlap error is lower than εmax

overlap (see (2.1)), the detections are considered repeated.

Let Ω be the region covered by both images ua and ub. Since the number of repeated
detections is upper bounded by the minimal number of detections in Ω (under the assumption
that there are no multiple matches), the repeatability rate is defined as

(2.2) rep =
number of repeated detections

min (|Ka|Ω, |Kb|Ω) ,

where |Ka|Ω and |Kb|Ω denote the respective numbers of detections inside Ω.

2.2. Illustration and alternative definitions. To discuss and illustrate the repeatability
criterion, let us consider the particular case of a pair of detections R(xa,Σa) and R(xb,Σb)
whose reprojections on the reference image are two disks, both of radius r and with centers
separated by a distance d (Figure 1). Such a pair will be considered repeated if d/r ≤
f(εmax

overlap), where f is a monotone function easily derived from (2.1). Figure 2(a) shows the
maximum distance d under which both detections will be considered repeated as a function
of the radius r.D

ow
nl

oa
de

d 
07

/1
5/

16
 to

 1
52

.3
.4

3.
17

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

IS REPEATABILITY AN UNBIASED CRITERION? 2561

As pointed out in [30], detectors providing larger regions have a better chance of yielding
good overlap scores, boosting as a result their repeatability scores. This also means that one
can artificially increase the repeatability score of any detector by increasing the scale associated
with its detections. The authors of [30] proposed to avoid this objection by normalizing
the detected region size before computing the overlapped error. The two detected elliptical
regions R(xa,Σa) and R(xb,Σb) in (2.1) are replaced, respectively, by the elliptical regions
R(xa, κ

2/raRaΣa) and R(xb, κ
2/rbRbΣb), where ra and Ra (respectively, rb and Rb) are the radii

of the elliptical region R(xa,Σa) (respectively, R(xb,Σb)) and κ = 30 is the geometric mean
of its radii after normalization.

The idea of such a normalization was to prevent boosting a detector’s performance by
enlarging its associated ellipse. Yet, such a criterion is not scale invariant, meaning that it
may be overpermissive or underpermissive depending on the detection size. For example,
the maximal distance separating repeated detections of equal size does not take into account
the scale (e.g., the radius of the circle in our special case illustration; see Figure 2(b). In
consequence, with εmax

overlap set to its standard value (εmax
overlap = 40%), two circular detections of

radius 1 pixel and centers separated by 12 pixels can still be regarded as repeated, although
their respective descriptors may not even overlap!
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Figure 2. Illustration of three different definitions of the repeatability criteria. Consider a pair of detections
whose reprojections on the reference image are two disks of radius r with their centers separated a distance d.
The maximal tolerated separation distance dmax between repeated detections is plotted as a function of the radius
r for four values of the parameter εmax

overlap (5%, 20%, 40%, and 60%). (a) original definition given by (2.1), (b)
with ellipsis normalization κ = 30, (c) definition implemented in the code provided by the authors of [30]. Only
the first definition is scale invariant.

Surprisingly, the code1 provided by the authors of [30] does not implement any of the
criteria defined in their article. The code introduces a third definition by incorporating an
additional criterion on the maximum distance separating two repeated keypoints that depends
on the scale by

|xa −Hxb| ≤ 4
√

raRa.

This criterion is illustrated in Figure 2(c) for the same study case of two circular detections
of equal size. This third criterion is not scale invariant either. Thus in this paper we shall stick
to the first definition, which is scale invariant. With the nonredundant repeatability criterion

1http://www.robots.ox.ac.uk./∼vgg/research/affine/(retrieved on August 5th, 2014).D
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2562 IVES REY-OTERO AND MAURICIO DELBRACIO

to be introduced in the next section, it will become pointless to try “boosting” a detector’s
scale. Indeed such attempts will result in decreased matching performance. The detection’s
characterizing scale will be the spatial extent of the descriptor ultimately computed, which is
the real practical scale associated with each detector.

2.3. Repeatability favors redundant detectors. The following mental experiment sheds
light on how the repeatability favors redundancy. Let DET be a generic keypoint detector,
and let DET2 be a variant in which each detection is simply counted twice. The number of
repeatable keypoints and the total number of detections are both artificially doubled, leaving
the repeatability rate unchanged. However, although the number of costly descriptor com-
putations has doubled, no extra benefit can be extracted from the enlarged set of repeated
keypoints. The classic repeatability rate fails to report that the benefit over cost ratio of
DET2 is half the one of DET. This explains why methods producing correlated detections
may misleadingly get better repeatability ratios.

A popular attempt for mitigating this drawback is to compare detectors at a fixed number
of detections [21, 25]. This would not, however, solve the problem for two reasons. First, by a
similar reasoning as before, one can imagine a detector that repeats its best detection N times
(N being the “fixed” number of detections) while discarding the rest. Such a detector would
achieve optimal repeatability, despite being useless. But most importantly, given a detector,
selecting theN best detections via a parameter (e.g., a threshold) is not generally an easy task.
For example, in SIFT, the most popular way of adjusting the number of detected keypoints is
by thresholding the analysis operator (difference of Gaussians) to retain only the most salient
features. However, it is well known that this does not necessarily lead to a good selection in
terms of stability [34]. To improve the selection, Li et al. [21] proposed a supervised regression
process to learn how to rank SIFT keypoints. Although this scheme produces good results it
requires supervised learning.

For these reasons, we believe that a fair comparison should prefer the genuinely inde-
pendent detections. The metric introduced in the following section is a first attempt in this
direction.

3. Nonredundant repeatability. Besides the repeatability measure, which ignores the key-
points spatial distribution, other specific metrics have been proposed. Some examine the
spatial distribution of the descriptors and others evaluate how well they describe the image.
The ratio between the convex hull of the detected features and the total image surface is used
in [7] as a coverage measure. The harmonic mean of the detections positions is used in [10, 9]
as a measure of concentration. In [8], the authors propose to measure the completeness of
the detected features, namely, the ability to preserve the information contained in an image
by the detected features. The information content metric proposed in [37] quantifies the dis-
tinctiveness of a detected feature with respect to the whole set of detections. Nondistinctive
features are indeed harmful, as they can match to many others and therefore confuse the
matching. Being complementary to it, these metrics are generally used in combination with
the repeatability rate. Nevertheless, since the purpose of the repeatability is to report on
the benefit/cost ratio of a given detector, it should also, by itself, report on the description
redundancy. We shall see that the descriptors redundancy can be naturally incorporated into
the repeatability criterion.
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3.1. Nonredundant detections. To evaluate the redundancy of a set of detections k ∈
K, each detection (xk,Σk) can be assigned, in accordance with the descriptor associated
canonically with the keypoint for each method, a mask function fk(x) consisting of a truncated
elliptical Gaussian

fk(x) = Ke
− 1

2ζ2
(x−xk)

TΣ−1
k (x−xk)

if (x − xk)
TΣ−1

k (x − xk) ≤ ρ2 and 0 elsewhere. Each mask is normalized so that its integral
over the image domain is equal to 1. The values ρ and ζ control the extent of the detected
feature, as it can be derived from the descriptor’s design. They will be fixed here for each
detector by referring to the original paper where it was introduced (section 4). Indeed most
detectors proposals come up with a descriptor or at least with a characterization of the region
where this descriptor should be computed.

(a) (b) (c) (d)

Figure 3. The mask functions formalizing the keypoint description on a toy example consisting of several
Gaussian blobs (a). The sum over all detections

∑
k∈K fk(x) maps the contribution of each image pixel to

different descriptors (b). The max over all detections masks maxk∈K fk(x) maps the pixel contributions to the
best available descriptor (c). Their difference maps the detection redundancy (d).

The sum of all descriptor masks
∑

k∈K fk(x) yields a final map showing how much each
image pixel contributes to the set of all computed descriptors. Note that one pixel may con-
tribute to several descriptors (as in the example shown in Fig 3). Similarly, the maximum
taken over all detections maxk∈K fk(x) measures the contribution of pixel x to the best de-
scriptor. Thanks to the mask normalization, the number of keypoints K := card (K) is given
by

(3.1) K =

∫
Ω

(∑
k∈K

fk(x)

)
dx,

where Ω denotes the image domain. On the other hand,

(3.2) Knr :=

∫
Ω

(
max
k∈K

fk(x)

)
dx

measures the number of nonredundant keypoints. This value can be interpreted as a count of
the independent detections.

To gain some intuition and see why this measurement is quite natural, let us examine four
illustrative cases. Assume that there are only two detected keypoints so that K = 2. If the
two detectionsD
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a. completely overlap, then Knr = 1;
b. share the same center but have different sizes, then 1 < Knr < K = 2. But if their

sizes are significantly different, then Knr ≈ 2, which makes sense. Indeed, one of them
describes a fine detail and the other one a detail at a larger scale. Their information
contents are roughly independent;

c. have both keypoints very close to each other, then, again, 1 < Knr < K = 2 and the
above remark on scales still applies;

d. have descriptors that do not overlap at all, then Knr = K = 2.

The propensity of a given algorithm to extract overlapped and redundant detections can
therefore be measured by computing the nonredundant detection ratio

(3.3) nr-ratio := Knr/K.

3.2. Nonredundant repeatability. The above definitions entail a straightforward modifi-
cation of the repeatability criterion (2.2). Let Kr be the set of repeatable keypoints (satisfying
(2.1)) between two snapshots, and Ω the area simultaneously covered by both images. We
define the nonredundant repeatability rate by

(3.4) nr-rep :=

∫
Ω maxk∈Kr fk(x)dx

min (|Ka|Ω, |Kb|Ω) ,

where |Ka|Ω and |Kb|Ω denote the respective numbers of detections inside Ω. The number of
repeated detections in (2.2) is replaced in (3.4) by the number of nonredundant detections.

4. Spatial coverage of state-of-the-art feature detectors. In this section we review
the twelve state-of-the-art feature detectors that will be compared using the nonredundant
repeatability criteria. Our goal is to specify the region of the descriptor associated with each
detector. A classical objection is that the descriptors associated with a detector may influence
its matching performance. Hence the detector performance should be evaluated independently
of its associated descriptor, and conversely. Fortunately, most papers introducing a detector
also specify the area of interest around each detector as a circular or elliptical region. This
is the region on which the final descriptor will be computed, regardless of its description
technique. This information about the descriptor’s region can be taken from the original
papers. It is independent of the ultimate choice of a description technique, which may indeed
vary strongly. In our discussion of each detector, we shall nevertheless also associate a fixed
type of descriptor to each method, so as to be able to compare matching performance on an
equal footing. This comparison is performed at the end of section 5.

Some of the detectors considered here were also compared in the original benchmark by
Mikolajczyk et al. [30], namely, the Harris–Laplace and Hessian–Laplace [30], Harris-Affine
and Hessian-Affine [30], EBR [40], IBR [41], and MSER [27]. We also included here, for
completeness, methods published since: SIFT [23, 24], SURF [3], SFOP [13], BRISK [20],
and SIFER [25]. Table 1 summarizes the algorithms’ invariance properties. For details, we
refer the reader to the original methods’ publications and to the survey by Tuytelaars and
Mikolajczyk [39].

Furthermore, we shall show detection maps on pattern images as well as on natural pho-
tographs to illustrate the behavior of each algorithm.D
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Most keypoint detection methods share the use of the Gaussian scale-space u(x, σ) defined
by

u(x, σ) := (Gσ ∗ u)(x), with Gσ(x) =
1

2πσ
e−

‖x‖2
2σ2 ,

where σ and x are, respectively, called the scale and space variables.

Table 1
Summary of algorithms’ invariance properties. A zoom is the combination of a homothety and a Gaussian

smoothing modeling the camera’s point spread function. The considered detectors detect elliptical regions (x,Σ),
circular regions (x, σ), regions, or parallelograms.

detects feature rotation zoom homothety affine

SIFT (x, σ) blob yes yes no no
EBR parallelograms corners yes no yes limited
IBR (x,Σ) blob yes no yes yes
Hessian-Laplace (x, σ) blob yes yes no no
Hessian-Affine (x,Σ) blob yes yes no limited
Harris-Laplace (x, σ) corner yes yes no no
Harris-Affine (x,Σ) corner yes yes no limited
MSER regions contrasted level lines yes no no yes
SURF (x, σ) blob limited yes no no
SFOP (x, σ) junction, circles yes no yes no
BRISK (x, σ) corners yes yes no no
SIFER (x, σ) blob no no yes limited

SIFT [23, 24] is probably the most popular local image comparison method. SIFT computes
a multiscale image representation, detects keypoints from this scale-space, and extracts patch
descriptors for each of the detections. For detecting keypoints, SIFT takes extrema of the
convolution of the image with the normalized Laplacian of Gaussians (LoG). More precisely,
SIFT approximates the LoG kernel by a difference of Gaussians (DoG),

wSIFT(σ,x) = σ2ΔGσ ∗ u(x) ≈ (Gkσ −Gσ) ∗ u(x),

where k = 2
1
3 is a constant factor. The stable interpolated 3D extrema of the multiscale

representation are the SIFT keypoints. The description of a keypoint consists of a feature
vector assembled from the gradient distribution over an oriented patch surrounding the de-
tected keypoint. For a detection at scale σ, the described patch covers a circular area of radius
ρσ = 6

√
2σ weighted by a Gaussian mask of standard deviation2 ζσ = 6σ. The described

patch is oriented along a dominant orientation of the gradient distribution. SIFT considers
multiple dominant orientations. This means that one keypoint may be described by various
feature vectors, each corresponding to one of the dominant orientations (see [32] for a detailed
description of the SIFT algorithm). We shall also consider a variant of SIFT that only takes
one feature vector per detection, the one corresponding to the dominant orientation. We shall
call it SIFT-single (SIFT-S).

2In the original SIFT algorithm the area covered by the descriptor is a square patch of size 12σ × 12σ.
However, to make uniform all the algorithms since some of them do not give a reference keypoint orientation,
we opted to replace the patch by the smallest disk containing it, which therefore covers a slightly larger area.D
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EBR (edge based region) [40] is an affine-invariant region detector. This method
is not based on a scale-space image representation but on explicitly searching the image for
structures of various sizes. Starting from a Harris corner point, EBR localizes the two nearby
edges and analyzes their curvature to assign to each segment a characteristic direction and
length. EBR returns the parallelogram bounded by the two edge segments. The parallelogram
regions can be mapped into elliptical shapes having the same first and second moments. The
EBR descriptor consists of a set of invariant moments computed over the elliptical region.
For the sake of comparison, we will rely on the matching experiments on an affine normalized
SIFT feature vector computed over the same elliptical region. In contrast with the SIFT
method, the normalized patch is not weighted by a Gaussian mask.

IBR (intensity based region) [41] is an affine-invariant method which detects elliptical
shapes of various sizes centered on specific gray level extrema. This method is not based on
the Gaussian scale-space. By detecting abrupt changes in the intensity profiles along a set
of rays originating from a gray value extremum, IBR extracts contrasted regions of various
sizes and associates with them elliptical shapes. Similarly to EBR, invariant moments are
computed over the detected region to build the feature vector. For the sake of homogeneity
in our matching comparisons we shall instead use a SIFT descriptor computed on the affine
normalized patch, without applying a Gaussian weighting mask.

Harris–Laplace and Hessian–Laplace detectors [30]. Unlike SIFT, these methods
use two multiscale representations instead of one. The first one is used to determine the
keypoint location and the second one is used to select its characteristic scale. In the case of
the Hessian–Laplace method, the first multiscale representation is the two-dimensional (2D)
Hessian determinant while the second one is the normalized Laplacian, both computed on the
Gaussian pyramid [22]. The 2D Hessian determinant extremum gives the keypoint location
x. Then, the extremum of the scale-space Laplacian Δu(x, σ) with respect to σ gives the
keypoint scale. The detector goes back and forth between both multiscale representations to
iteratively refine x and σ. The Harris–Laplace method proceeds almost identically. Only the
Harris operator [17] is used in place of the 2D Hessian to extract the keypoint location x. The
Harris–Laplace features are predominantly corners while the Hessian–Laplace mostly detects
blobs. Unlike in the SIFT method, the extrema are not interpolated to subpixel precision.
Once extracted, each keypoint is locally described, using the SIFT or the gradient location
and orientation histogram (GLOH) descriptor [30, 29]. Consequently, for a detection at scale
σ, the described patch covers a circular area of radius ρσ = 6

√
2σ weighted by a Gaussian

mask of standard deviation ζσ = 6σ.

Harris-Affine and Hessian-Affine detectors [30] are affine extensions of the Harris–
Laplace and Hessian–Laplace detectors. Instead of detecting keypoints, both methods detect
elliptical regions. Compared to the Harris–Laplace and Hessian–Laplace methods, the affine
variants contain an additional step in which the second-moment matrix is used to estimate
an elliptical shape around each keypoint.3 These elliptical shapes are used to normalize
the local neighborhood by an affine transformation before its description (using the SIFT or

3The elliptical shape is estimated via an iterative procedure. Unreliable detections with degenerated second-
moment matrices are also discarded in the process.D
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the GLOH descriptor). The SIFT descriptor is adopted in the present study. If σ denotes
the geometric mean of the ellipse radii, then the described patch covers a circular area in
the affine-normalized neighborhood of radius ρσ = 6

√
2σ weighted by a Gaussian mask of

standard deviation ζσ = 6σ.

MSER (maximally stable extremal region) [27] is an affine-invariant method which
extracts regions that are connected components of image upper level sets. By examining how
the area of the image upper level sets evolves with respect to an image intensity threshold,
MSERmeasures the region stability. TheMSERs are the regions that achieve a local maximum
of the (nonpositive) derivative of the region area with respect to its level. MSER proposes to
compute feature descriptors at different scales of the detected region size (1.5, 2, and 3 times
the convex hull of the detected region). In addition, MSER regions can be easily mapped
into elliptical shapes and then used to compute an affine descriptor of the detected region.
In the present framework, for each of the detected regions a SIFT feature vector on an affine
normalized patch of twice the size of the detected region was computed.

SURF (speeded-up robust feature) [3] can be regarded as a fast alternative to SIFT.
SURF keypoints are the 3D extrema of a multiscale image representation that approximates
the 2D Hessian determinant computed on each scale of the Gaussian scale-space. The Gaussian
convolution is approximated using box filters computed via integral images. SURF descriptors
are computed over a Gaussian window centered at the keypoint, and encode the gradient
distribution around the keypoint using 2D Haar wavelets. The described patch for a detection
at scale σ covers a circular area of radius ρσ = 10

√
2σ weighted by a Gaussian mask of

standard deviation ζσ = 3.3σ. Note that the described areas used in SIFT and SURF are
slightly different. A SURF descriptor patch is larger but uses a more concentrated Gaussian
mask.

SFOP (scale-invariant feature operator) [13] is a versatile multiscale keypoint de-
tector that explicitly models and detects corners, junctions, and circular features. SFOP is
built on the Förstner feature operator [12] for detecting junctions and on the spiral model [4]
for unifying different feature types into a common mathematical formulation. For detecting
keypoints at different scales, the input image is decomposed into a series of images using a
Gaussian pyramid. Each image is then scanned for various feature types, namely, circular
structures of various sizes and junctions of different orientations. At each pixel, the algorithm
takes a surrounding patch and evaluates its consistency to the feature model. Although SFOP
only concerns keypoint detection, the authors recommend combining the SFOP detector with
SIFT’s descriptor. Consequently, the described patch for a detection at scale σ also covers
a circular area of radius ρσ = 6

√
2σ weighted by a Gaussian mask of standard deviation

ζσ = 6σ.

BRISK (binary robust invariant scalable keypoint) [20] focuses on speed and
efficiency. The BRISK detector is a multiscale adaptation of FAST and its optimized version
AGAST [35, 26] corner detectors. The AGAST corner detector is first applied separately
to each scale of a Gaussian pyramid decomposition to rapidly identify potential regions of
interests. For each pixel in such regions, a corner score quantifying the detection confidence
is computed (see [26] for details). Based on the AGAST corner score, BRISK performs aD
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3D nonmaxima suppression and a series of quadratic interpolations to extract the BRISK
keypoints (x, s), (x) being the 2D position and s the feature size. The BRISK descriptor is a
binary string resulting from brightness differences computed around the keypoint.

In the current analysis, we calibrated the size of the detections s provided by the BRISK
binary to make it comparable to the other methods. We empirically found that the image of
a 2D Gaussian function of standard deviation σ produces a SIFT detection of scale σ while
it produces a BRISK feature of size s = 4σ. In consequence, for a BRISK detection of size s,
the described patch in the present study covers a circular area of radius ρs = 3

2

√
2s weighted

by a Gaussian mask of standard deviation ζs = 3
2s.

SIFER (scale-invariant feature detector with error resilience) [25]. The recently
introduced SIFER algorithm tightly follows SIFT, but computes a different multiscale image
representation. Instead of smoothing the image with a set of Gaussian filters and computing
its Laplacian, SIFER convolves the image with a bank of cosine modulated Gaussian kernels
(see Figure 4).

(4.1) cmgσ(x, y) =
(
2πσ2

(
cos
(cx
σ

)
+ cos

(cy
σ

))
Gσ

)
.

The 3D extrema of the resulting multiscale representation are the SIFER keypoints. The
method is homothety invariant. Unlike SIFT, however, SIFER is not zoom-out invariant.
Indeed, its kernel does not commute with a Gaussian camera blur. The authors claim that,
despite losing rotation invariance, the approach increases the detection precision in both scale
and space thanks to the better localization of the modulated cosine filters. The descriptor
computed at each extracted keypoint is identical to the SIFT descriptor. Therefore, the
described patch considered in the present study covers a circular area of radius ρσ = 6

√
2σ

weighted by a Gaussian mask of standard deviation ζσ = 6σ.

cmgσ(x, y) σ2ΔGσ(x, y)

Figure 4. SIFER (left) and SIFT (right) filter kernels. The SIFER kernel, a Gaussian modulated along
the two axes by cosine functions is not rotation invariant, while the difference of Gaussians used in SIFT is.

Table 2 summarizes the values of ρ and ζ for each method.

4.1. Detection maps. Different detectors extract different kinds of features, in different
amounts, and with different spatial distributions. To visually inspect the algorithms generalD
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Table 2
Summary of the parameters controlling the spatial coverage of a detection for each evaluated method. The

parameter ρ controls the size of the patch encoded in the descriptor. For methods that apply a Gaussian weighting
window to the described patch, the parameter ζ controls the standard deviation of the Gaussian function.

ρ ζ

SIFT 6
√
2 6

Hessian-Laplace 6
√
2 6

Hessian-Affine 6
√
2 6

Harris-Laplace 6
√
2 6

Harris-Affine 6
√
2 6

MSER 2 -

ρ ζ

EBR 1 -
IBR 1 -

SURF 10
√
2 3.3

SFOP 6
√
2 6

BRISK 3/2
√
2 3/2

SIFER 6
√
2 6

behavior, Figures 5 and 6 show the detection maps for the twelve compared methods on the
siemens pattern and on the bike image from the Oxford dataset [30].

The detection number varies from one method to the other, and also from one sequence
to the next. MSER generally detects fewer features than the rest while SIFT and the Harris
and Hessian based methods detect many more.

The rotation invariance of the methods is easily tested by examining the detections on the
siemens star test image shown in Figure 5. Unsurprisingly, SIFT and SFOP are rotation
invariant while SIFER is not. More surprisingly, the Hessian and Harris based methods are
not rotation invariant. Although the Hessian determinant and the Laplacian of the Gaussian
smoothing are isotropic, the methods fail to maintain the theoretical invariance properties
due to the discretization of the differential operators.

Several feature detectors generate multiple detections from a single local feature. This is
clearly the case for Harris-Affine, Hessian-Affine, and, to a lesser extent, for BRISK. In general,
with the exception of SIFT, SFOP, and MSER, all the detectors appear to be visually highly
redundant.

In some cases, while detections are numerous, they cluster on a reduced part of the scene.
This is observed for instance with SIFER, (see, e.g., Figure 6). This seems to imply that the
information contained in the descriptors computed from SIFER keypoints is both redundant
and incomplete.

5. Experiments. Using the proposed nonredundant repeatability criterion, we examined
the performance of the described feature detectors on the Oxford dataset [30].4 The Oxford
dataset contains eight sequences of six images each designed to help assess the stability of the
detections with respect to habitual image perturbations, namely, rotation and scale changes,
viewpoint changes, camera blur, illumination changes, and JPEG compression artefacts. The
eight sequences are shown in Figure 7. The original and publicly available binaries of all but
one method were used.5 No reference implementation of SIFER was available; we therefore
relied on our own implementation rigorously following the published description [25]. The

4Dataset available at http://www.robots.ox.ac.uk/∼vgg/research/affine/
5Methods binaries are found at http://www.robots.ox.ac.uk/∼vgg/research/affine/, http://docs.opencv.

org/doc/tutorials/features2d/feature detection/feature detection.html, http://www.vision.ee.ethz.ch/∼surf/
and http://www.cs.ubc.ca/∼lowe/keypoints/ http://www.ipb.uni-bonn.de/sfop/D
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SIFT (17) EBR (249) IBR (13) Harris-Laplace (242)

Hessian-Laplace (1927) Harris-Affine (227) Hessian-Affine (244) MSER (18)

SURF (652) SFOP (59) BRISK (97) SIFER (203)

Figure 5. Keypoints map on siemens star test image. For better readability of the figure, the descriptor
ellipses are reduced to one sixth of their real size. Thus, when two ellipses overlap, their associated descriptors
are in strong overlap. This is particularly conspicuous for the Hessian and Harris detectors. The total number
of detected keypoints by each method is shown in brackets. SIFT and SFOP seem to be the only (experimentally)
rotationally invariant methods. The elliptical shapes deduced from the MSER regions have different sizes in each
rotated triangle. By design, SIFT detects blob-like structures and SFOP additional features, such as corners
and edges.

parameters of each method were set to their default values. All scripts and codes are available
for download.6

The performance evaluation of a detector is two-dimensional. On the one hand, a detector
should produce as many detections as possible, while on the other, it should keep to a minimum
the number of nonrepeatable detections. In other words, the best detector is the one that has
simultaneously the largest repeatability ratio and the largest number of detections.

6In particular a documented and optimized version of the repeatability criteria [30] along with the two
variants discussed in section 2 are available for download at http://dev.ipol.im/∼reyotero/comparing 20140906.
tar.gz.D
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SIFT (2038) EBR (644) IBR (652) Harris-Laplace (740)
Hessian-Laplace

(3502)
Harris-Affine (727)

Hessian-Affine (2857) MSER (352) SURF (781) SFOP (1379) BRISK (339) SIFER (664)

Figure 6. Keypoints map on an image from the bikes sequence. For a better readability of the figure, we
reduced six times the descriptors ellipses with respect to their real size. This also means that when two ellipses
overlap, their associated descriptors are in strong overlap. The total number of detected keypoints by each
method is shown in brackets. The number of detections significantly varies with the algorithm. Hessian based
methods and SIFT produce many more detections than the rest. All methods, with the exception of IBR and
EBR, detect features at very different scales. In particular, SIFT and SFOP detect very small structures. Most
algorithms detect the same structure several times, producing significantly overlapped detections. The SIFER
detections are disturbingly concentrated on clusters not necessarily overlapped. Yet the proposed nonredundant
repeatability metric will not penalize such behavior. For the Harris and Hessian based methods, note how corners
generate trails of detections of increasing size.

As we showed in the previous section, a quick visual examination of the detection maps
already reveals that some methods are more redundant than others. For example, it is clear
from Figure 5 (siemens star) that SIFER, SURF, and the Hessian based methods produce
highly redundant detections. The nonredundancy ratio shown in Table 3(a) for the eight
Oxford sequences helps rank the methods in terms of redundancy. With nonredundant ratios
lower than 7% on all eight sequences, the Hessian based detectors are the most redundant
methods. On the other end of the spectrum, the least redundant method is MSER having
an average nonredundant ratio of 51%. SIFT and its SIFT-S variant come second, with
nonredundant ratios ranging from 20% to 36%. Since the number of detections of SIFT and
Hessian-Laplace are comparable (Table 3(b)), the cost of extracting and matching descriptors
is similar for both methods. Notwithstanding this fact, SIFT produces well-spread detections
while the Hessian-Laplace are redundant and overlapped. Under such circumstances, we
expect that taking into account the descriptors overlap will change significantly the hierarchy
given by the repeatability rates.

The classic repeatability and the nonredundant repeatability rates as well as the number
of detections for the eight Oxford sequences are provided in Table 3. Also, in Figure 8 theD
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Figure 7. The Oxford dataset. Different series of images simulating different image transformations. From
top to bottom: bark and boat (scale changes and rotations), bikes (camera blur), graf (viewpoint changes),
leuven (illumination changes), trees (camera blur), ubc (JPEG compression), wall (viewpoint changes) image
series.

average repeatability rates for all the compared detectors are plotted as a function of the
number of detections. Note that in general, the number of repeated points oscillates around
40% of the total number of detections. This is a much lower rate than usually achieved with
the more permissive definition of the repeatability criterion; see section 2.

As previously said, the repeatability score must be compared alongside the number of
detections to have a complete performance evaluation of detectors. The methods that provide,
in general, the largest number of detections are SIFT, SIFER, and the Hessian based methods.
MSER, EBR, and IBR produce significantly fewer detections. The methods that are the
most redundant also happen to be the methods that perform well according to the classic
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Table 3
Detectors comparison regarding repeatability and nonredundant repeatability rates on the eight sequences of

the Oxford dataset. The algorithm with the best number is colored in red and the next three in bordeaux. Each
table focuses on a single metric: the (nonredundant) repeatability of the number of detection in the common
area. A fair comparison should consider both metrics simultaneously (see Figure 8).

bark bikes boat graf leuven trees ubc wall mean
scale blur scale viewp illum blur jpeg viewp

SIFT 0.26 0.27 0.26 0.29 0.35 0.20 0.24 0.23 0.24
SIFT-S 0.31 0.32 0.31 0.34 0.41 0.24 0.29 0.27 0.29
EBR 0.23 0.18 0.10 0.11 0.15 0.23 0.1 0.08 0.12
IBR 0.20 0.24 0.21 0.21 0.30 0.20 0.21 0.28 0.22
HARLAP 0.11 0.10 0.06 0.06 0.12 0.04 0.08 0.07 0.07
HESLAP 0.04 0.04 0.03 0.03 0.05 0.03 0.04 0.03 0.03
HARAFF 0.12 0.10 0.07 0.07 0.13 0.05 0.08 0.08 0.07
HESAFF 0.04 0.05 0.05 0.04 0.07 0.03 0.04 0.04 0.04
MSER 0.61 0.55 0.51 0.55 0.58 0.48 0.55 0.48 0.51
SURF 0.16 0.16 0.11 0.11 0.16 0.10 0.13 0.13 0.12
SFOP 0.17 0.24 0.21 0.26 0.25 0.17 0.19 0.18 0.20
BRISK 0.26 0.28 0.14 0.27 0.26 0.10 0.17 0.13 0.15
SIFER 0.31 0.23 0.18 0.21 0.22 0.16 0.18 0.19 0.19

bark bikes boat graf leuven trees ubc wall mean
scale blur scale viewp illum blur jpeg viewp

SIFT 1021.6 1034.8 3802.8 1906.6 1736.6 9143.0 5296.0 8677.6 4077.4
SIFT-S 848.0 871.0 3225.6 1641.8 1473.6 7506.8 4272.6 7255.2 3386.8
EBR 75.2 366.4 665.2 577.4 458.0 535.2 756.0 2012.4 680.7
IBR 131.8 573.2 280.6 293.6 238.2 1141.0 563.2 453.4 459.4
HARLAP 118.0 541.0 1438.8 1120.8 568.4 4419.6 1549.0 1963.4 1464.9
HESLAP 814.6 2936.4 2794.8 3164.8 2233.2 8201.6 3594.0 4913.8 3581.7
HARAFF 120.2 533.2 1392.2 1103.0 555.8 4397.6 1501.0 1931.6 1441.8
HESAFF 807.2 2470.0 2217.2 2180.2 1538.6 7875.8 3146.0 4798.4 3129.2
MSER 85.4 195.2 592.4 280.4 276.4 1839.4 716.0 1372.8 669.8
SURF 183.0 546.6 948.2 913.4 607.8 3000.0 1194.0 1564.2 1119.7
SFOP 476.0 1040.8 825.8 530.2 1014.0 3293.0 1859.4 2243.2 1410.3
BRISK 119.2 194.2 1149.6 374.0 521.4 3016.6 1408.8 2413.2 1149.6
SIFER 159.4 729.8 4321.4 1570.6 2591.4 8818.2 6609.8 8535.2 4167.0

(a) Average nonredundant ratio nr := Knr/K. (b) Average number of detections.

bark bikes boat graf leuven trees ubc wall mean
scale blur scale viewp illum blur jpeg viewp

SIFT 23.4 44.3 17.6 11.8 42.5 6.7 29.1 8.0 22.9
SIFT-S 23.3 44.6 18.1 11.9 43.5 7.1 30.0 8.3 23.4
EBR 7.5 66.6 53.5 38.6 55.1 16.0 51.4 38.8 40.9
IBR 37.2 51.9 46.4 50.6 58.1 33.4 45.6 36.1 44.9
HARLAP 52.5 52.4 40.2 21.3 50.2 23.2 73.6 29.9 42.9
HESLAP 57.9 69.5 50.0 22.4 70.1 33.1 73.8 36.4 51.7
HARAFF 48.6 50.0 36.7 26.9 47.5 20.2 71.8 27.9 41.2
HESAFF 54.7 66.8 46.8 30.7 65.9 28.4 72.7 35.8 50.2
MSER 32.9 52.2 42.4 55.6 72.8 18.0 44.8 40.4 44.9
SURF 63.6 72.6 48.2 19.4 64.6 29.5 70.9 36.7 50.7
SFOP 29.7 31.8 25.9 13.7 42.6 8.4 36.2 18.8 25.9
BRISK 2.4 9.9 4.0 4.3 18.2 5.4 16.6 5.8 8.3
SIFER 1.4 49.9 7.4 1.5 37.5 9.1 50.9 10.0 20.9

bark bikes boat graf leuven trees ubc wall mean
scale blur scale viewp illum blur jpeg viewp

SIFT 7.3 15.2 6.6 4.5 19.2 3.2 10.6 3.7 8.8
SIFT-S 8.8 18.1 7.8 5.3 22.6 3.9 13.1 4.4 10.5
EBR 5.3 15.4 6.6 9.2 10.3 6.8 7.4 5.4 8.3
IBR 19.8 15.2 15.4 17.5 26.2 11.9 13.7 17.7 17.2
HARLAP 11.1 9.1 4.1 2.6 10.1 3.1 6.8 4.9 6.5
HESLAP 3.8 3.7 2.4 1.2 4.6 2.1 3.5 2.6 3.0
HARAFF 11.1 9.4 4.0 4.2 10.4 3.0 7.2 5.3 6.8
HESAFF 4.1 4.6 2.8 2.8 6.4 2.2 4.1 3.0 3.7
MSER 27.2 35.9 24.0 32.8 49.8 13.1 29.9 25.4 29.8
SURF 14.7 13.3 7.1 3.7 14.1 5.6 10.2 8.0 9.6
SFOP 10.0 11.5 10.3 6.2 16.7 4.2 10.7 6.1 9.5
BRISK 2.3 7.2 2.7 3.4 11.8 3.5 7.7 3.9 5.3
SIFER 1.2 14.7 3.4 1.2 12.3 3.7 11.2 3.8 6.4

(c) Average repeatability. (d) Average nonredundant repeatability.

repeatability criteria (see Table 3(d)). Indeed, the Hessian based methods are among the
methods with the largest repeatability while providing numerous detections. Note that SFOP
is outperformed by the Harris based methods in all eight sequences, while providing a similar
number of detections.

These conclusions are drastically altered when the redundancy of detections is taken into
account. According to the nonredundant repeatability shown in Table 3(d), the hardly redun-
dant SIFT method achieves one of the top three best scores while providing, in general, one
of the largest number of detections. The Hessian based methods and SIFER, while achieving
detection numbers comparable to those of SIFT, perform poorly according to the nonredun-
dant repeatability. Despite having fewer detections, the nonredundant repeatability of SURF
is lower than the one of SIFT in five sequences out of eight. Unlike what was concluded
with the classic criterion, SFOP outperforms the Harris based methods in seven out of eight
sequences. In fact, SFOP performs generally well. In all sequences, SFOP is one of the three
best algorithms according to the nonredundant repeatability while it performed poorly for
the traditional repeatability. On average, MSER and IBR produce the best nonredundant
repeatability scores. Nevertheless, with up to ten times more detections, SIFT should be
preferred to MSER except for severe changes of viewpoint (see Figure 8). In principle, MSER
is not blur invariant. Yet, it performs surprisingly well on the sequence bikes, containing
well-contrasted large geometric features. MSER may benefit here from its low number of
detections.
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Figure 8. The average of the repeatability and nonredundant repeatability on each Oxford sequence is
plotted as a function of the average number of keypoints detected. The performance evaluation of a detector is
two-dimensional. On the one hand, a detector should detect as many keypoints as possible (abscissa). On the
other, the detections should be as repeatable as possible (ordinate). Good detectors are on the top-right region of
this plot. To compare a single detector performance the reader might follow the relative ordinate position of a
particular detector in a particular scene in the traditional repeatability (left) and the nonredundant repeatability
plots (right). For instance, MSER and SIFT algorithms always go up from the traditional to the nonredundant
repeatability plots. This means that MSER and SIFT detections are less redundant than the average.D
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To summarize the relative performance of each method on the entire Oxford data set we
proceeded as follows. First, the number of detections, the repeatability, and nonredundant
repeatability rates on each sequence were rescaled to cover the interval [0, 1]. Then, we
computed the mean of the rescaled detectors performance over the eight sequences. Figure 9
shows the relative repeatability and nonredundant repeatability scores as a function of the
number of the normalized number detections. In this map a method performs optimally if it
is simultaneously extremal in ordinate and in abscissa, and performs well if it is extremal in
at least one of the coordinates. Thus, the normalized benchmark reveals that the ranking of
detectors is severely disrupted when considering the detectors redundancy. While, for example,
Harris and Hessian based methods, SURF and EBR, significantly reduce their performance
(going down in the plot), MSER and BRISK improve their position relative to the others.
When the redundancy is not taken into account the method producing the most detections and
with the highest repeatability is Hessian Laplace, while when considering the nonredundant
variant it is SIFT.
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Figure 9. Qualitative visualization of the methods repeatability performance. This is an average over eight
sequences. For each sequence, the number of detections, the matching rates, and the nonredundant matching
rates are scaled to the full range [0, 1] and averaged into a single map. Once normalized, the mean values of
each method over the eight sequences are computed. On the left, the normalized repeatability is plotted as a
function of the normalized number of detections. On the right, the normalized nonredundant repeatability is
plotted as a function of the normalized number of detections. The same conclusions observed in each of the
eight Oxford sequences apply in this qualitative contest.

Matching scenario. We also explored the algorithms performance on a matching sce-
nario. For that purpose, we adopted the same protocol as in [30]. Each detector is combined
with a SIFT descriptor. Around each detection, a patch is extracted to compute the dominant
orientation and a SIFT feature vector. The width of the extracted patch is computed as the
mean of the detected ellipse radii multiplied by the method’s parameter ρ, as described for
each method in section 4. For all the SIFT feature vectors in one image we found the most
similar feature vector on the other image (in terms of the Euclidean distance). If the distance
to the most similar one is less than 60% of the distance to the second nearest feature, then the
pair of detections is considered as a match (as proposed in [24]) Table 4(a) gives the number
of detections in the common area. Table 4(b) shows the average total number of matchesD
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2576 IVES REY-OTERO AND MAURICIO DELBRACIO

Table 4
The matching performance of the compared detectors on the eight sequences of the Oxford dataset. In red is

the algorithm with the largest number in the column. The other top three are in bordeaux. The best algorithm
is the one that produces the largest number of correct (nonredundant) matches, provided it does not make too
many detections. This is a bidimensional criterion that is not fully represented in a single table. Another
comparison will consider both components simultaneously (Figure 10).

bark bikes boat graf leuven trees ubc wall mean
scale blur scale viewp illum blur jpeg viewp

SIFT 1021.6 1034.8 3802.8 1906.6 1736.6 9143.0 5296.0 8677.6 4077.4
SIFT S 848.0 871.0 3225.6 1641.8 1473.6 7506.8 4272.6 7255.2 3386.8
EBR 75.2 366.4 665.2 577.4 458.0 535.2 756.0 2012.4 680.7
IBR 131.8 573.2 280.6 293.6 238.2 1141.0 563.2 453.4 459.4
HARLAP 118.0 541.0 1438.8 1120.8 568.4 4419.6 1549.0 1963.4 1464.9
HESLAP 814.6 2936.4 2794.8 3164.8 2233.2 8201.6 3594.0 4913.8 3581.7
HARAFF 120.2 533.2 1392.2 1103.0 555.8 4397.6 1501.0 1931.6 1441.8
HESAFF 807.2 2470.0 2217.2 2180.2 1538.6 7875.8 3146.0 4798.4 3129.2
MSER 85.4 195.2 592.4 280.4 276.4 1839.4 716.0 1372.8 669.8
SURF 183.0 546.6 948.2 913.4 607.8 3000.0 1194.0 1564.2 1119.7
SFOP 476.0 1040.8 825.8 530.2 1014.0 3293.0 1859.4 2243.2 1410.3
BRISK 119.2 194.2 1149.6 374.0 521.4 3016.6 1408.8 2413.2 1149.6
SIFER 159.4 729.8 4321.4 1570.6 2591.4 8818.2 6609.8 8535.2 4167.0

bark bikes boat graf leuven trees ubc wall mean
scale blur scale viewp illum blur jpeg viewp

SIFT 328.0 271.6 567.0 170.6 518.2 335.0 889.6 1189.6 533.7
SIFT-S 388.4 322.4 637.8 198.6 585.4 370.4 1040.0 732.4 534.4
EBR 5.0 60.0 19.8 14.2 51.8 15.0 186.0 0.0 44.0
IBR 9.2 69.8 13.2 13.4 30.0 48.8 112.2 19.8 39.6
HARLAP 21.4 203.0 244.4 53.2 154.0 338.6 943.2 210.4 271.0
HESLAP 168.2 1125.2 378.4 124.8 653.6 705.0 2022.8 572.6 718.8
HARAFF 9.4 155.8 125.0 48.8 122.8 225.6 840.2 201.6 216.2
HESAFF 50.2 857.4 148.4 67.6 400.2 507.6 1636.0 567.2 529.3
MSER 7.2 67.0 37.8 12.0 108.6 61.2 194.6 154.6 80.4
SURF 47.2 311.0 177.8 54.4 233.4 410.2 741.2 261.4 279.6
SFOP 132.8 310.2 217.8 64.0 357.0 186.2 587.8 384.2 280.0
BRISK 5.2 29.0 67.6 20.2 114.8 125.8 344.8 160.2 108.5
SIFER 8.6 313.0 384.0 55.4 872.6 553.0 2329.6 1694.4 776.3

(a) Average number of detections. (b) Total number of matches.

bark bikes boat graf leuven trees ubc wall mean
scale blur scale viewp illum blur jpeg viewp

SIFT 106.8 240.8 365.2104.8420.2 161.8 758.6 303.0 307.7
SIFT-S 133.0 286.0 413.0124.2474.6 180.6 894.4 128.4 329.3
EBR 0.4 56.6 13.0 6.8 43.8 7.0 174.4 0.0 37.8
IBR 2.2 64.6 8.4 5.8 27.2 30.2 102.4 14.2 31.9
HARLAP 18.8 189.2 219.6 48.0 141.2 258.0 927.6 173.6 247.0
HESLAP 138.21047.8326.8101.8609.8536.81942.0456.4 645.0
HARAFF 7.8 142.6 102.8 42.2 109.2 172.2 819.6 158.6 194.4
HESAFF 41.2 782.2 123.0 49.6 366.4 372.21585.4443.4 470.4
MSER 4.6 65.6 32.0 8.0 106.2 50.6 189.8 133.8 73.8
SURF 41.0 294.2 157.2 45.0 211.2 312.4 694.6 227.6 247.9
SFOP 76.4 248.8 179.8 47.8 295.6 116.0 532.2 241.8 217.3
BRISK 2.0 13.6 28.2 8.2 57.0 47.8 176.8 51.2 48.1
SIFER 0.8 286.2 136.4 9.8 703.6263.02195.8504.2 512.5

bark bikes boat graf leuven trees ubc wall mean
scale blur scale viewp illum blur jpeg viewp

SIFT 47.1106.7173.3 52.8 234.3 91.0 344.1181.3 153.8
SIFT-S 52.5118.8190.4 59.5 264.6 101.2387.4 70.4 155.6
EBR 0.0 6.9 2.3 1.5 5.4 2.3 7.9 0.0 3.3
IBR 0.5 9.6 2.3 1.1 6.8 7.5 9.3 12.5 6.2
HARLAP 7.1 38.0 36.7 11.1 39.1 59.2 89.0 47.8 41.0
HESLAP 19.2 80.5 39.5 13.9 74.9 78.3 93.0 64.4 58.0
HARAFF 3.1 36.4 29.4 12.5 36.8 51.2 89.6 51.1 38.8
HESAFF 12.3 83.7 29.5 14.2 70.3 69.7 98.8 72.2 56.4
MSER 2.2 43.2 26.1 6.3 81.3 39.5 129.5 106.2 54.3
SURF 11.0 47.9 28.8 11.2 49.0 63.9 71.8 68.9 44.0
SFOP 31.2 96.9 70.2 21.6 130.4 62.6 160.8 96.3 83.8
BRISK 0.8 8.5 19.8 6.2 39.1 32.5 81.2 39.2 28.4
SIFER 0.2 91.0 73.7 7.5 253.1 109.7536.8210.8 160.4

(c) Number of correct matches. (d) Number of nonredundant correct matches.

while Table 4(c) presents the number of correct matches, namely, those that are consistent
with the ground truth. Like in the repeatability criterion, one match is considered correct
if the overlap error between the two matched keypoints (elliptical regions) is less than 40%.
Table 4(d) gives the number of nonredundant correct matches.

Due in part to their large number of detections, the Hessian based methods achieve,
in general, the largest number of correct matches. In particular, in the ubc sequence, the
Hessian-Laplace and Hessian-Affine provide almost twice as many correct matches than SIFT
on average. However, this apparent advantage of the Hessian based methods fades away once
the detection redundancy is taken into account, as revealed by the number of nonredundant
correct matches.

SIFT and its single orientation variant achieve the largest number of nonredundant correct
matches in most sequences. Although SIFER produces, on average, the maximum number
of nonredundant correct matches on the whole data set, it performs poorly on two sequences
(graf and bark). In Figure 10, the average ratios of correct matches for the 13 compared
detectors are plotted as a function of the number of detections. Figure 11 summarizes the
methods matching performance relative to each other. For that purpose, the number of
detections, the ratio of correct matches, and the ratio of nonredundant correct matches were
rescaled, and the mean values over the eight sequences of the rescaled ratios are plotted as a
function of the normalized number of detected keypoints.

Similarly to what we have observed on the repeatability ratio, the normalized matching
benchmark reveals that the ranking of detectors is significantly disrupted when consideringD
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0 1000 2000 3000
0

5

10

15

20

25

30

Number of detections

R
at

io
 o

f c
or

re
ct

 m
at

ch
es

0 1000 2000 3000
0

1

2

3

4

5

6

7

Number of detections

R
at

io
 o

f n
on

−r
ed

un
da

nt
 c

or
re

ct
 m

at
ch

e

0 1000 2000 3000
0

1

2

3

4

Number of detections

R
at

io
 o

f c
or

re
ct

 m
at

ch
es

0 1000 2000 3000
0

0.5

1

1.5

Number of detections

R
at

io
 o

f n
on

−r
ed

un
da

nt
 c

or
re

ct
 m

at
ch

(c) bikes (blur) (d) graf (viewpoint)
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Figure 10. Ratio of correct matches (left) and nonredundant correct matches (right), i.e., the number of
matches over number of detections in the area covered by both images. Again, to compare a single detector
matching performance the reader might follow the relative ordinate position of a particular detector in a partic-
ular scene. Generally, MSER, SIFT, and SFOP algorithms go up once the redundancy of matches is taken into
account. On the other side, Hessian based methods and EBR/IBR always go down once the matches redundancy
is taken into account.
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Figure 11. Qualitative visualization of the methods relative matching performances. This is an average
over eight sequences. For each sequence, the number of detections, the matching rates, and the nonredundant
matching rates are scaled to the full range [0, 1] and averaged into a single map. In a matching scenario taking
into account the redundancy of matches, SIFT outperforms Hessian based methods.

the detectors redundancy. Indeed, when the redundancy is not taken into account, the Hessian
Laplace detector is the one producing more detections and a greater number of correct matches
per detection. If instead we consider the redundancy, SIFT is the method producing more
detections and more nonredundant correct matches per detection.

Interestingly, computing a single orientation for each keypoint improves the performance
of the SIFT method. Indeed, this lowers the computational cost of descriptor computations,
increases the nonredundant repeatability, and maintains the number of nonredundant correct
matches.

6. Discussion. In this paper, we have shown that the classic repeatability criterion is
biased towards favoring algorithms producing redundant overlapped detections. This bias
motivated the introduction of a variant of the repeatability rate taking into account the de-
scriptor overlap. To illustrate the new repeatability criterion, the performance of several state-
of-the-art methods was examined. Experimental evidence showed that, once the descriptors’
overlap is taken into account, the traditional hierarchy of several popular methods is severely
disrupted. Thus, the detections and associated descriptions generated by some methods are
highly correlated. Such redundant parasite detections are arguably caused by scale-space
sampling issues (as in the case of Hessian and Harris based methods) or the method’s design.
For example, the SIFER’s kernel generates clusters of scale-space extrema for each blob. The
proposed repeatability criterion seems in agreement with the redundancies observed on pat-
terns and on natural images. It also agrees with the detectors matching performance when
combined with a common descriptor technique. Experimental evidence reveals that the SIFT
and SFOP methods perform best overall as they offer the best balance between a large number
of detections and a strong nonredundant repeatability, while MSER performs best for strong
affine distortions with fewer detections. The amended metric aims at giving a general yet re-
alistic assessment of keypoint detectors. The revisited benchmark along with detection maps
on simple patterns seems to invalidate the performance gains reported over the last decade.D
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