DGtal
0.6.devel
|
#include <ClosedIntegerHalfPlane.h>
Public Types | |
typedef ClosedIntegerHalfPlane < TSpace > | Self |
typedef TSpace | Space |
typedef Space::Integer | Integer |
typedef Space::Point | Point |
typedef Space::Vector | Vector |
Public Member Functions | |
BOOST_CONCEPT_ASSERT ((CSpace< TSpace >)) | |
~ClosedIntegerHalfPlane () | |
ClosedIntegerHalfPlane (const Vector &aN, const Integer &aC) | |
ClosedIntegerHalfPlane (const Point &A, const Point &B, const Point &inP, IntegerComputer< Integer > &ic) | |
bool | operator() (const Point &p) const |
bool | isOnBoundary (const Point &p) const |
Vector | tangent () const |
void | negate () |
void | selfDisplay (std::ostream &out) const |
bool | isValid () const |
Data Fields | |
Vector | N |
Integer | c |
Aim: A half-space specified by a vector N and a constant c. The half-space is the set \( \{ P \in Z^2, N.P \le c \} \).
Description of template class 'ClosedIntegerHalfPlane'
A model of boost::DefaultConstructible, boost::CopyConstructible, boost::Assignable, CPointPredicate.
Definition at line 63 of file ClosedIntegerHalfPlane.h.
typedef Space::Integer DGtal::ClosedIntegerHalfPlane< TSpace >::Integer |
Definition at line 69 of file ClosedIntegerHalfPlane.h.
typedef Space::Point DGtal::ClosedIntegerHalfPlane< TSpace >::Point |
Definition at line 70 of file ClosedIntegerHalfPlane.h.
typedef ClosedIntegerHalfPlane<TSpace> DGtal::ClosedIntegerHalfPlane< TSpace >::Self |
Definition at line 65 of file ClosedIntegerHalfPlane.h.
typedef TSpace DGtal::ClosedIntegerHalfPlane< TSpace >::Space |
Definition at line 68 of file ClosedIntegerHalfPlane.h.
typedef Space::Vector DGtal::ClosedIntegerHalfPlane< TSpace >::Vector |
Definition at line 71 of file ClosedIntegerHalfPlane.h.
|
inline |
|
inline |
Constructor from normal and constant.
aN | a vector that defines the normal direction to the half-plane. |
aC | the constant that defines the bound. |
Definition at line 50 of file ClosedIntegerHalfPlane.ih.
|
inline |
Constructor. Computes the half-space of the form N.P<=c whose supporting line passes through A and B such that the point inP satisfies the constraint.
A | any point. |
B | any point different from A. |
inP | any point not on the straight line (AB). |
ic | any compatible integer computer. |
Definition at line 95 of file ClosedIntegerHalfPlane.ih.
References DGtal::IntegerComputer< TInteger >::floorDiv(), DGtal::IntegerComputer< TInteger >::gcd(), and DGtal::IntegerComputer< TInteger >::getDotProduct().
DGtal::ClosedIntegerHalfPlane< TSpace >::BOOST_CONCEPT_ASSERT | ( | (CSpace< TSpace >) | ) |
|
inline |
p | any point in the plane. |
Definition at line 67 of file ClosedIntegerHalfPlane.ih.
Referenced by DGtal::LatticePolytope2D< TSpace, TSequence >::getAllPointsOfHull(), and DGtal::LatticePolytope2D< TSpace, TSequence >::getFirstPointsOfHull().
|
inline |
Checks the validity/consistency of the object.
Definition at line 136 of file ClosedIntegerHalfPlane.ih.
|
inline |
Negates the half-space. Only the boundary is common.
Definition at line 85 of file ClosedIntegerHalfPlane.ih.
References DGtal::ClosedIntegerHalfPlane< TSpace >::negate().
Referenced by DGtal::LatticePolytope2D< TSpace, TSequence >::getIncludedDigitalPoints(), DGtal::LatticePolytope2D< TSpace, TSequence >::halfSpace(), and DGtal::ClosedIntegerHalfPlane< TSpace >::negate().
|
inline |
p | any point in the plane. |
Definition at line 58 of file ClosedIntegerHalfPlane.ih.
|
inline |
Writes/Displays the object on an output stream.
out | the output stream where the object is written. |
Definition at line 124 of file ClosedIntegerHalfPlane.ih.
|
inline |
Definition at line 76 of file ClosedIntegerHalfPlane.ih.
Referenced by DGtal::LatticePolytope2D< TSpace, TSequence >::getFirstPointsOfHull().
Integer DGtal::ClosedIntegerHalfPlane< TSpace >::c |
Vector DGtal::ClosedIntegerHalfPlane< TSpace >::N |
Definition at line 76 of file ClosedIntegerHalfPlane.h.
Referenced by DGtal::LatticePolytope2D< TSpace, TSequence >::cut(), DGtal::LatticePolytope2D< TSpace, TSequence >::getAllPointsOfHull(), DGtal::LatticePolytope2D< TSpace, TSequence >::getFirstPointsOfHull(), and DGtal::LatticePolytope2D< TSpace, TSequence >::getIncludedDigitalPoints().