A Survey of Gaussian Convolution Algorithms
Functions
gaussian_conv_am.c File Reference

Alvarez-Mazorra approximate Gaussian convolution. More...

Detailed Description

Alvarez-Mazorra approximate Gaussian convolution.

Author
Pascal Getreuer getre.nosp@m.uer@.nosp@m.cmla..nosp@m.ens-.nosp@m.cacha.nosp@m.n.fr

Copyright (c) 2011-2013, Pascal Getreuer All rights reserved.

This program is free software: you can redistribute it and/or modify it under, at your option, the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version, or the terms of the simplified BSD license.

You should have received a copy of these licenses along with this program. If not, see http://www.gnu.org/licenses/ and http://www.opensource.org/licenses/bsd-license.html.

Definition in file gaussian_conv_am.c.

#include <assert.h>
#include <math.h>
#include "filter_util.h"
#include "gaussian_conv_am.h"

Go to the source code of this file.

Functions

static num am_left_boundary (const num *data, long N, long stride, num nu, long num_terms)
 Handling of the left boundary for Alvarez-Mazorra. More...
 
void am_gaussian_conv (num *dest, const num *src, long N, long stride, double sigma, int K, num tol, int use_adjusted_q)
 Gaussian convolution with Alvarez-Mazorra. More...
 
void am_gaussian_conv_image (num *dest, const num *src, int width, int height, int num_channels, num sigma, int K, num tol, int use_adjusted_q)
 2D Gaussian convolution with Alvarez-Mazorra More...
 

Function Documentation

static num am_left_boundary ( const num data,
long  N,
long  stride,
num  nu,
long  num_terms 
)
static

Handling of the left boundary for Alvarez-Mazorra.

Parameters
datasignal data
Nnumber of elements
stridestride between successive samples
nufilter parameter nu
num_termsnumber of terms to use to approximate infinite sum
Returns
the sum approximating the first filtered sample value

This routine approximates the infinite sum $ u_0 = \sum_{j=0}^\infty \nu^j \Tilde{x}_j $ by adding the first num_terms terms.

Definition at line 38 of file gaussian_conv_am.c.