DGtal  0.6.devel
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Groups Pages
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 1234567]
oCDGtal::LabelledMap< TData, L, TWord, N, M >::__AnyBlock
oCDGtal::LabelledMap< TData, L, TWord, N, M >::__FirstBlock
oCDGtal::AbsFunctor< T >
oCDGtal::Adapter< ArithmeticalDSS >Aim: abstract adapter for ArithmeticalDSS. Has 2 virtual methods:
oCDGtal::AndBoolFct2
oCDGtal::AngleComputer
oCDGtal::AngleLinearMinimizerAim: Used to minimize the angle variation between different angles while taking into accounts min and max constraints. Example (
oCDGtal::IndexedListWithBlocks< TValue, N, M >::AnyBlock
oCDGtal::KhalimskySpaceND< dim, TInteger >::AnyCellCollection< CellType >
oCDGtal::DigitalSurface< TDigitalSurfaceContainer >::Arc
oCDGtal::ArithmeticalDSS< TIterator, TInteger, connectivity >Aim: Dynamic recognition of a digital straight segment (DSS) defined as the sequence of simply connected points (x,y) such that mu <= ax - by < mu + omega
oCDGtal::ArithmeticalDSS3d< TIterator, TInteger, connectivity >Aim: Dynamic recognition of a 3d-digital straight segment (DSS)
oCArrayLXY< Value, L, X, Y >
oCArrayXYOfLabelledMap< Value, L, X, Y, TWord, N, M >
oCArrayXYOfMap< Value, L, X, Y >
oCAssignable
oCDGtal::FrechetShortcut< TIterator, TInteger >::Backpath
oCBallFunctor< TPoint >
oCBallPredicate< TPoint >
oCDGtal::BidirectionalSegmentComputer
oCDGtal::BinaryPointPredicate< TPointPredicate1, TPointPredicate2, TBinaryFunctor >Aim: The predicate returns true when the given binary functor returns true for the two PointPredicates given at construction
oCDGtal::BinomialConvolver< TConstIteratorOnPoints, TValue >Aim: This class represents a 2D contour convolved by some binomial. It computes first and second order derivatives so as to be able to estimate tangent and curvature. In particular, it smoothes digital contours but could be used for other kind of contours
oCDGtal::BinomialConvolverEstimator< TBinomialConvolver, TBinomialConvolverFunctor >Aim: This class encapsulates a BinomialConvolver and a functor on BinomialConvolver so as to be a model of CLocalGeometricEstimator
oCDGtal::Bits
oCDGtal::LabelledMap< TData, L, TWord, N, M >::BlockConstIterator
oCDGtal::LabelledMap< TData, L, TWord, N, M >::BlockIterator
oCDGtal::IndexedListWithBlocks< TValue, N, M >::BlockPointer
oCDGtal::LabelledMap< TData, L, TWord, N, M >::BlockPointer
oCDGtal::BasicColorToScalarFunctors::BlueChannel
oCDGtal::BoundaryPredicate< TKSpace, TImage >Aim: The predicate on surfels that represents the frontier between a region and its complementary in an image. It can be used with ExplicitDigitalSurface or LightExplicitDigitalSurface so as to define a digital surface. Such surfaces may of course be open
oCDGtal::BreadthFirstVisitor< TGraph, TMarkSet >Aim: This class is useful to perform a breadth-first exploration of a graph given a starting point or set (called initial core)
oCDGtal::CanonicCellEmbedder< TKSpace >Aim: A trivial embedder for unsigned cell, which corresponds to the canonic injection of cell centroids into Rn
oCDGtal::CanonicDigitalSurfaceEmbedder< TDigitalSurface >Aim: A trivial embedder for digital surfaces, which corresponds to the canonic injection of cell centroids into Rn
oCDGtal::CanonicEmbedder< TSpace >Aim: A trivial embedder for digital points, which corresponds to the canonic injection of Zn into Rn
oCDGtal::CanonicSCellEmbedder< TKSpace >Aim: A trivial embedder for signed cell, which corresponds to the canonic injection of cell centroids into Rn
oCDGtal::CastFunctor< TOutput >Aim: Define a simple functor using the static cast operator
oCDGtal::CBackInsertable< T >Aim: Represents types for which a std::back_insert_iterator can be constructed with std::back_inserter. Back Insertion Sequence are refinements of CBackInsertable. They require more services than CBackInsertable, for instance read services or erase services
oCDGtal::CBidirectionalIteratorArchetype< T >An archetype of BidirectionalIterator
oCDGtal::CCellularGridSpaceND< T >Aim: This concept describes a cellular grid space in nD. In these spaces obtained by cartesian product, cells have a cubic shape that depends on the dimension: 0-cells are points, 1-cells are unit segments, 2-cells are squares, 3-cells are cubes, and so on
oCDGtal::CColorMap< CMap >Aim: Defines the concept describing a color map. A color map converts a value within a given range into an RGB triple
oCDGtal::CConstBidirectionalIteratorArchetype< T >An archetype of ConstBidirectionalIterator
oCDGtal::CConstSinglePassRange< T >Aim: Defines the concept describing a const range
oCDGtal::CDigitalBoundedShape< TShape >
oCDGtal::CDigitalOrientedShape< T >Aim: characterizes models of digital oriented shapes. For example, models should provide an orientation method for points on a SpaceND. Returned value type corresponds to DGtal::Orientation
oCDGtal::CDigitalSetArchetype< TDomain >Aim: The archetype of a container class for storing sets of digital points within some given domain
oCDGtal::CDigitalSurfaceContainer< T >Aim:
oCDGtal::CDigitalSurfaceTracker< T >Aim:
oCDGtal::CDomainArchetype< TSpace >Aim: The archetype of a class that represents a digital domain, i.e. a non mutable subset of points of the given digital space
oCDGtal::CDrawableWithBoard2D< T >
oCDGtal::CDrawableWithDisplay3D< T >
oCDGtal::CellDirectionIterator< dim, TInteger >
oCDGtal::KhalimskySpaceND< dim, TInteger >::CellMap< Value >
oCDGtal::CEuclideanBoundedShape< TShape >
oCDGtal::CEuclideanOrientedShape< T >Aim: characterizes models of digital oriented shapes. For example, models should provide an orientation method for real points. Returned value type corresponds to DGtal::Orientation
oCDGtal::CForwardIteratorArchetype< T >An archetype of ForwardIterator
oCDGtal::CGlobalGeometricEstimator< T >Aim: This concept describes an object that can process a range so as to return one estimated quantity for the whole range
oCDGtal::ConceptUtils::CheckFalse< T >
oCDGtal::ConceptUtils::CheckTag< T >
oCDGtal::ConceptUtils::CheckTrue< T >
oCDGtal::ConceptUtils::CheckTrue< TagTrue >
oCDGtal::ConceptUtils::CheckTrueOrFalse< T >
oCDGtal::ConceptUtils::CheckUnknown< T >
oCDGtal::ConceptUtils::CheckUnknown< TagUnknown >
oCDGtal::CImplicitFunction< T >Aim: Describes any function of the form f(x), where x is some real point in the given space, and f(x) is some value
oCDGtal::CircleFrom2Points< TPoint >Aim: Represents a circle that passes through a given point and that is thus uniquely defined by two other points. It is able to return for any given point its signed distance to itself
oCDGtal::CircleFrom3Points< TPoint >Aim: Represents a circle uniquely defined by three 2D points and that is able to return for any given 2D point its signed distance to itself
oCDGtal::Circulator< TIterator >Aim: Provides an adapter for STL iterators that can iterate through the underlying data structure as in a loop. The increment (resp. decrement if at least bidirectionnal) operator encapsulates the validity test and the assignement to the first (resp. last) iterator of a given range. For instance, the pre-increment operator does:
oCDGtal::CirculatorType
oCDGtal::Display3D::clippingPlaneD3D
oCDGtal::CLocalGeometricEstimator< T >Aim: This concept describes an object that can process a range so as to return one estimated quantity for each element of the range (or a given subrange)
oCDGtal::Clock
oCDGtal::ClosedIntegerHalfPlane< TSpace >Aim: A half-space specified by a vector N and a constant c. The half-space is the set \( \{ P \in Z^2, N.P \le c \} \)
oCDGtal::CNormalVectorEstimator< T >Aim: Represents the concept of estimator of normal vector along digital surfaces
oCDGtal::COBAGenericNaivePlane< TSpace, TInternalInteger >Aim: A class that recognizes pieces of digital planes of given axis width. When the width is 1, it corresponds to naive planes. Contrary to COBANaivePlane, the axis is not specified at initialization of the object. This class uses three instances of COBANaivePlane, one per axis
oCDGtal::COBANaivePlane< TSpace, TInternalInteger >Aim: A class that contains the COBA algorithm (Emilie Charrier, Lilian Buzer, DGCI2008) for recognizing pieces of digital planes of given axis width. When the width is 1, it corresponds to naive planes. The axis is specified at initialization of the object
oCDGtal::CombinatorialDSS< TConstIterator, TInteger >::CodeHandler< TIterator, iterator_type >
oCDGtal::CombinatorialDSS< TConstIterator, TInteger >::CodeHandler< TIterator, bidirectional_iterator_tag >
oCDGtal::CombinatorialDSS< TConstIterator, TInteger >::CodeHandler< TIterator, random_access_iterator_tag >
oCDGtal::FreemanChain< TInteger >::CodesRangeAim: model of CRange that provides services to (circularly)iterate over the letters of the freeman chain
oCDGtal::ColorStructure representing an RGB triple
oCDGtal::ColorBrightnessColorMap< PValue, PDefaultColor >Aim: This class template may be used to (linearly) convert scalar values in a given range into a color with given lightness
oCDGtal::CombinatorialDSS< TConstIterator, TInteger >Aim:
oCDGtal::CompareLocalEstimators< TFirstEsimator, TSecondEstimator >Aim: Functor to compare two local geometric estimators
oCDGtal::Viewer3D::compFarthestPolygonFromCamera
oCDGtal::Viewer3D::compFarthestSurfelFromCamera
oCDGtal::Viewer3D::compFarthestTriangleFromCamera
oCDGtal::Viewer3D::compFarthestVoxelFromCamera
oCDGtal::Composer< TFunctor1, TFunctor2, ReturnType >Aim: Define a new Functor from the composition of two other functors
oCDGtal::FrechetShortcut< TIterator, TInteger >::Cone
oCConfigPointPredicate< Vector >
oCDGtal::ConnectivityException
oCDGtal::ConstantConvolutionWeights< TDistance >Aim: implement a trivial constant convolution kernel which returns 1 to each distance
oCDGtal::ConstantPointPredicate< TPoint, boolCst >Aim: The predicate that returns always the same value boolCst
oCDGtal::ConstantPointPredicate< TPoint, false >
oCDGtal::ConstantPointPredicate< TPoint, true >
oCDGtal::Labels< L, TWord >::ConstEnumerator
oCDGtal::ConstImageAdapter< TImageContainer, TNewDomain, TFunctorD, TNewValue, TFunctorV >Aim: implements a const image adapter with a given domain (i.e. a subdomain) and 2 functors : g for domain, f for accessing point values
oCDGtal::IndexedListWithBlocks< TValue, N, M >::ConstIterator
oCDGtal::LabelledMap< TData, L, TWord, N, M >::ConstIterator
oCDGtal::StandardDSLQ0< TFraction >::ConstIterator
oCDGtal::BreadthFirstVisitor< TGraph, TMarkSet >::ConstIterator< TAccessor >
oCDGtal::DepthFirstVisitor< TGraph, TMarkSet >::ConstIterator< TAccessor >
oCDGtal::FreemanChain< TInteger >::ConstIterator
oCDGtal::ConstIteratorAdapter< TIterator, TLightFunctor, TReturnType >This class adapts any iterator so that operator* returns another element than the one pointed to by the iterator
oCDGtal::CombinatorialDSS< TConstIterator, TInteger >::ConstPointIterator
oCDGtal::ConstRangeAdapter< TIterator, TFunctor, TReturnType >Aim: model of CConstBidirectionalRange that adapts any range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner)
oCDGtal::ConstRangeFromPointAdapter< TRange, TFunctor, TReturnType >Aim: model of CConstBidirectionalRangeFromPoint that adapts any bidirectional range and provides services to iterate over it (in a read-only manner)
oCDGtal::HyperRectDomain< TSpace >::ConstSubRangeAim: range through some subdomain of all the points in the domain. Defines a constructor taking a domain in parameter plus some additional parameters to specify the subdomain, begin and end methods returning ConstIterator, and rbegin and rend methods returning ConstReverseIterator
oCDGtal::ConstValueFunctor< TValue >Aim: Define a simple functor that returns a constant value (0 by default)
oCDGtal::ContourHelperAim: a helper class to process sequences of points
oCDGtal::CountedPtr< T >Aim: Smart pointer based on reference counts
oCDGtal::CountedPtr< T >::counter
oCDGtal::CowPtr< T >Aim: Copy on write shared pointer
oCDGtal::CPointFunctor< T >Aim: Defines a functor on points
oCDGtal::CPointFunctor< I >
oCDGtal::CPointPredicate< T >Aim: Defines a predicate on a point
oCDGtal::CSeparableMetric< T >
oCDGtal::CSinglePassOutputRange< T, Value >Aim: refined concept of single pass range which require that an output iterator exists
oCDGtal::CSpace< T >Aim: Defines the concept describing a digital space, ie a cartesian product of integer lines
oCDGtal::CUndirectedSimpleLocalGraph< T >Aim: Represents the concept of local graph: each vertex has neighboring vertices, but we do not necessarily know all the vertices
oCDGtal::CUndirectedSimpleLocalGraph< Adj >
oCDGtal::CurvatureFromBinomialConvolverFunctor< TBinomialConvolver, TReal >Aim: This class is a functor for getting the tangent vector of a binomial convolver
oCDGtal::detail::CurvatureFromDCA< isCCW >
oCDGtal::detail::CurvatureFromDCA< false >
oCDGtal::detail::CurvatureFromDSSBaseEstimator< DSSComputer, Functor >
oCDGtal::detail::CurvatureFromDSSBaseEstimator< DSSComputer, detail::CurvatureFromDSSLength >
oCDGtal::detail::CurvatureFromDSSBaseEstimator< DSSComputer, detail::CurvatureFromDSSLengthAndWidth >
oCDGtal::detail::CurvatureFromDSSLength
oCDGtal::detail::CurvatureFromDSSLengthAndWidth
oCDGtal::CWithGradientMap< T >Aim: Such object provides a gradient map that associates to each argument some real vector
oCDGtal::LabelledMap< TData, L, TWord, N, M >::DataOrBlockPointerUsed in first block to finish it or to point to the next block
oCDGtal::DefaultConstImageRange< TImage >Aim: model of CConstBidirectionalRangeFromPoint that adapts the domain of an image in order to iterate over the values associated to its domain points (in a read-only as well as a write-only manner)
oCDGtal::DefaultFunctorAim: Define a simple default functor that just returns its argument
oCDGtal::DefaultImageRange< TImage >Aim: model of CConstBidirectionalRangeFromPoint and CBidirectionalOutputRangeFromPoint that adapts the domain of an image in order to iterate over the values associated to its domain points (in a read-only as well as a write-only manner)
oCDGtal::DepthFirstVisitor< TGraph, TMarkSet >Aim: This class is useful to perform a depth-first exploration of a graph given a starting point or set (called initial core)
oCDGtal::DGtalInventor< TSpace >Aim: A stream object based on Open Inventor for exporting or displaying DGtal objects
oCDGtal::DigitalSetBoundary< TKSpace, TDigitalSet >Aim: A model of CDigitalSurfaceContainer which defines the digital surface as the boundary of a given digital set
oCDGtal::DigitalSetBySTLSet< TDomain >Aim: A container class for storing sets of digital points within some given domain
oCDGtal::DigitalSetBySTLVector< TDomain >Aim: Realizes the concept CDigitalSet by using the STL container std::vector
oCDGtal::DigitalSetConverter< OutputDigitalSet >Aim: Utility class to convert between types of sets
oCDGtal::DigitalSetDomain< TDigitalSet >Aim: Constructs a domain limited to the given digital set
oCDGtal::DigitalSetFromMap< TMapImage >Aim: An adapter for viewing an associative image container like ImageContainerBySTLMap as a simple digital set. This class is merely based on an aliasing pointer on the image, which must exists elsewhere
oCDGtal::DigitalSetInserter< TDigitalSet >Aim: this output iterator class is designed to allow algorithms to insert points in the digital set. Using the assignment operator, even when dereferenced, causes the digital set to insert a point
oCDGtal::DigitalSetSelector< Domain, Preferences >Aim: Automatically defines an adequate digital set type according to the hints given by the user
oCDGtal::DigitalSetSelector< Domain, SMALL_DS+LOW_VAR_DS+HIGH_ITER_DS+LOW_BEL_DS >
oCDGtal::DigitalSetSelector< Domain, SMALL_DS+LOW_VAR_DS+LOW_ITER_DS+LOW_BEL_DS >
oCDGtal::DigitalSurface< TDigitalSurfaceContainer >Aim: Represents a set of n-1-cells in a nD space, together with adjacency relation between these cells. Therefore, a digital surface is a pure cubical complex (model of CCubicalComplex), made of k-cells, 0 <= k < n. This complex is generally not a manifold (i.e. a kind of surface), except when it has the property of being well-composed
oCDGtal::DigitalSurface2DSlice< TDigitalSurfaceTracker >Aim: Represents a 2-dimensional slice in a DigitalSurface. In a sense, it is a 4-connected contour, open or not. To be valid, it must be connected to some digital surface and a starting surfel
oCDGtal::DigitalSurfaceEmbedderWithNormalVectorEstimator< TDigitalSurfaceEmbedder, TNormalVectorEstimator >Aim: Combines a digital surface embedder with a normal vector estimator to get a model of CDigitalSurfaceEmbedder and CWithGradientMap. (also default constructible, copy constructible, assignable)
oCDGtal::DigitalSurfaceEmbedderWithNormalVectorEstimatorGradientMap< TDigitalSurfaceEmbedder, TNormalVectorEstimator >
oCDGtal::DigitalTopology< TForegroundAdjacency, TBackgroundAdjacency >Aim: Represents a digital topology as a couple of adjacency relations
oCDGtal::Display2DFactoryFactory for Display2D:
oCDGtal::Display3DAim: This semi abstract class defines the stream mechanism to display 3d primitive (like PointVector, DigitalSetBySTLSet, Object ...). The class Viewer3D and Board3DTo2D implement two different ways to display 3D objects. The first one (Viewer3D), permits an interactive visualisation (based on OpenGL ) and the second one (Board3DTo2D) provides 3D visualisation from 2D vectorial display (based on the CAIRO library)
oCDGtal::Display3DFactoryFactory for GPL Display3D:
oCDGtal::detail::DistanceFromDCA
oCDGtal::DistanceFunctorFromPoint< TImage >
oCDistanceTraits< TImage, TSet, norm >
oCDistanceTraits< TImage, TSet, 1 >
oCDGtal::DistanceTransformation< TSpace, TPointPredicate, p, IntegerLong >Aim: Implementation of the linear in time distance transformation for separable metrics
oCDGtal::DomainAdjacency< TDomain, TAdjacency >Aim: Given a domain and an adjacency, limits the given adjacency to the specified domain for all adjacency and neighborhood computations
oCDGtal::deprecated::DomainMetricAdjacency< Domain, maxNorm1, dimension >Aim: Describes digital adjacencies in a digital domain that are defined with the 1-norm and the infinity-norm
oCDGtal::DomainPredicate< TDomain >Aim: The predicate returning true iff the point is in the domain given at construction. It is just a wrapper class around the methods Domain::isInside( const Point & ), where Domain stands for any model of CDomain
oCDGtal::DrawableWithBoard2D
oCDGtal::DrawableWithDisplay3D
oCDGtal::DrawWithBoardModifier
oCDGtal::DrawWithDisplay3DModifierBase class specifying the methods for classes which intend to modify a Viewer3D stream
oCDGtal::DSSLengthEstimator< TConstIterator >Aim: a model of CGlobalCurveEstimator that segments the digital curve into DSS and computes the length of the resulting (not uniquely defined) polygon
oCDummy1< T >
oCDummy2< T >
oCDummyBigObject
oCDGtal::DummyObject< T >
oCDGtal::DynamicBidirectionalSegmentComputer
oCDGtal::DynamicSegmentComputer
oCDynArrayLXY< Value >
oCDynArrayXYOfLabelledMap< Value, L, TWord, N, M >
oCDynArrayXYOfMap< Value >
oCDGtal::DigitalSurface< TDigitalSurfaceContainer >::Edge
oCDGtal::Object< TDigitalTopology, TDigitalSet >::Edge
oCDGtal::EqualPointPredicate< TPoint >Aim: The predicate returns true when the point given as argument equals the reference point given at construction
oCDGtal::MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX >::EvalFun
oCDGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::EvalFun< XX, Fun >
oCDGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >::EvalFun2
oCDGtal::Expander< TObject >Aim: This class is useful to visit an object by adjacencies, layer by layer
oCDGtal::ExplicitDigitalSurface< TKSpace, TSurfelPredicate >Aim: A model of CDigitalSurfaceContainer which defines the digital surface as connected surfels. The shape is determined by a predicate telling whether a given surfel belongs or not to the shape boundary. Compute once the boundary of the surface with a tracking
oCDGtal::DigitalSurface< TDigitalSurfaceContainer >::Face
oCDGtal::FalseBoolFct0
oCFindAndGetValue< I, S, D, V >
oCFindAndGetValue< ImageContainerBySTLMap< D, V >, DigitalSetFromMap< ImageContainerBySTLMap< D, V > >, D, V >
oCDGtal::IndexedListWithBlocks< TValue, N, M >::FirstBlock
oCDGtal::FMM< TImage, TSet, TPointPredicate, TPointFunctor >Aim: Fast Marching Method (FMM) for nd distance transforms
oCDGtal::ForwardCategory
oCDGtal::ForwardSegmentComputer
oCDGtal::FP< TIterator, TInteger, connectivity >Aim: Computes the faithful polygon (FP) of a range of 4/8-connected 2D Points
oCDGtal::FPLengthEstimator< TConstIterator >Aim: a model of CGlobalCurveEstimator that computes the length of a digital curve using its FP (faithful polygon)
oCDGtal::LighterSternBrocot< TInteger, TQuotient, TMap >::FractionThis fraction is a model of CPositiveIrreducibleFraction
oCDGtal::LightSternBrocot< TInteger, TQuotient, TMap >::FractionThis fraction is a model of CPositiveIrreducibleFraction
oCDGtal::SternBrocot< TInteger, TQuotient >::FractionThis fraction is a model of CPositiveIrreducibleFraction
oCDGtal::FrechetShortcut< TIterator, TInteger >Aim: On-line computation Computation of the longest shortcut according to the Fréchet distance for a given error. See related article: Sivignon, I., (2011). A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance. DGCI 2011. Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-19867-0_28
oCDGtal::FreemanChain< TInteger >
oCDGtal::FrontierPredicate< TKSpace, TImage >Aim: The predicate on surfels that represents the frontier between two regions in an image. It can be used with ExplicitDigitalSurface or LightExplicitDigitalSurface so as to define a digital surface. Such surfaces may of course be open
oCDGtal::GaussDigitizer< TSpace, TEuclideanShape >Aim: A class for computing the Gauss digitization of some Euclidean shape, i.e. its intersection with some \( h_1 Z \times h_2 Z \times \cdots \times h_n Z \). Note that the real point (0,...,0) is mapped onto the digital point (0,...,0)
oCDGtal::GaussianConvolutionWeights< TDistance >Aim: implement a Gaussian centered convolution kernel
oCDGtal::GeometricalDCA< TConstIterator >Aim: On-line recognition of a digital circular arcs (DCA) defined as a sequence of connected grid edges such that there is at least one (Euclidean) circle that separates the centers of the two incident pixels of each grid edge
oCDGtal::GeometricalDSS< TConstIterator >Aim: On-line recognition of a digital straight segment (DSS) defined as a sequence of connected grid edges such that there is at least one straight line that separates the centers of the two incident pixels of each grid edge
oCDGtal::GradientColorMap< PValue, PDefaultPreset, PDefaultFirstColor, PDefaultLastColor >Aim: This class template may be used to (linearly) convert scalar values in a given range into a color in a gradient defined by two or more colors
oCDGtal::GrayscaleColorMap< PValue >Aim: This class template may be used to (linearly) convert scalar values in a given range into gray levels
oCDGtal::deprecated::GreedyDecomposition< TSegment >Aim: Computes the greedy decomposition of a sequence into segments (the last element of a given segment is the first one one of the next segment)
oCDGtal::GreedySegmentation< TSegmentComputer >Aim: Computes the greedy segmentation of a range given by a pair of ConstIterators. The last element of a given segment is the first one one of the next segment
oCDGtal::BasicColorToScalarFunctors::GreenChannel
oCDGtal::GridCurve< TKSpace >Aim: describes, in a cellular space of dimension n, a closed of open sequence of signed d-cells (or d-scells), d being either equal to 1 or (n-1)
oCDGtal::detail::HasNestedType< IC >Aim: Checks whether type has a nested type called 'Type' or not. NB: from en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
oCDGtal::LongvolReader< TImageContainer >::HeaderField
oCDGtal::VolReader< TImageContainer >::HeaderField
oCDGtal::HueShadeColorMap< PValue, DefaultCycles >Aim: This class template may be used to (linearly) convert scalar values in a given range into a color in a cyclic hue shade colormap, maybe aka rainbow color map. This color map is suitable, for example, to colorize distance functions. By default, only one hue cycle is used
oCDGtal::HyperRectDomain< TSpace >Aim: Parallelepidec region of a digital space, model of a 'CDomain'
oCDGtal::HyperRectDomain_Iterator< TPoint >
oCDGtal::HyperRectDomain_subIterator< TPoint >
oCDGtal::IdentityBoolFct1
oCDGtal::Image< TImageContainer >Aim: implements association bewteen points lying in a digital domain and values
oCDGtal::ImageAdapter< TImageContainer, TNewDomain, TFunctorD, TNewValue, TFunctorV, TFunctorVm1 >Aim: implements an image adapter with a given domain (i.e. a subdomain) and 3 functors : g for domain, f for accessing point values and f-1 for writing point values
oCDGtal::ImageContainerByHashTree< TDomain, TValue, THashKey >Model of CImageContainer implementing the association key<->Value using a hash tree. This class provides a built-in iterator
oCDGtal::experimental::ImageContainerByITKImage< TDomain, TValue >Aim: implements a model of CImageContainer using a ITK Image
oCDGtal::ImageContainerBySTLMap< TDomain, TValue >
oCDGtal::ImageContainerBySTLVector< TDomain, TValue >
oCDGtal::ImageFromSet< TImage >Aim: Define utilities to convert a digital set into an image
oCDGtal::ImageLinearCellEmbedder< TKSpace, TImage, TEmbedder >Aim: a cellular embedder for images. (default constructible, copy constructible, assignable). Model of CCellEmbedder
oCDGtal::ImageSelector< Domain, Value, Preferences >Aim: Automatically defines an adequate image type according to the hints given by the user
oCDGtal::ImageSelector< Domain, Value, LOW_ITER_I+LOW_BEL_I >
oCDGtal::ImplicitBall< TSpace >Aim: model of CEuclideanOrientedShape and CEuclideanBoundedShape concepts to create a ball in nD.
oCDGtal::ImplicitDigitalEllipse3< TPoint3 >
oCImplicitDigitalEllipse3< TPoint3 >
oCDGtal::ImplicitDigitalSurface< TKSpace, TPointPredicate >Aim: A model of CDigitalSurfaceContainer which defines the digital surface as the boundary of an implicitly define shape. Compute once the boundary of the surface with a tracking
oCDGtal::ImplicitFunctionDiff1LinearCellEmbedder< TKSpace, TImplicitFunctionDiff1, TEmbedder >Aim: a cellular embedder for implicit functions, (default constructible, copy constructible, assignable). Model of CCellEmbedder and CWithGradientMap
oCDGtal::ImplicitFunctionLinearCellEmbedder< TKSpace, TImplicitFunction, TEmbedder >Aim: a cellular embedder for implicit functions, (default constructible, copy constructible, assignable). Model of CCellEmbedder
oCDGtal::ImplicitHyperCube< TSpace >Aim: model of CEuclideanOrientedShape and CEuclideanBoundedShape concepts to create an hypercube in nD.
oCDGtal::ImplicitNorm1Ball< TSpace >Aim: model of CEuclideanOrientedShape and CEuclideanBoundedShape concepts to create a ball for the L_1 norm in nD
oCDGtal::ImplicitPolynomial3Shape< TSpace >Aim: model of CEuclideanOrientedShape concepts to create a shape from a polynomial
oCDGtal::ImplicitRoundedHyperCube< TSpace >Aim: model of CEuclideanOrientedShape and CEuclideanBoundedShape concepts to create a rounded hypercube in nD.
oCDGtal::ImpliesBoolFct2
oCDGtal::IndexedListWithBlocks< TValue, N, M >Aim: Represents a mixed list/array structure which is useful in some context. It is essentially a list of blocks
oCDGtal::InfiniteNumberException
oCDGtal::InputException
oCDGtal::InputIteratorWithRankOnSequence< TSequence, TRank >Aim: Useful to create an iterator that returns a pair (value,rank) when visiting a sequence. The sequence is smartly copied within the iterator. Hence, the given sequence need not to persist during the visit. Since it is only an input sequence, it is not necessary to give a valid sequence when creating the end() iterator
oCInsertAndAlwaysSetValue< I, S, D, V >
oCInsertAndAlwaysSetValue< ImageContainerBySTLMap< D, V >, DigitalSetFromMap< ImageContainerBySTLMap< D, V > >, D, V >
oCInsertAndSetValue< I, S, D, V >
oCInsertAndSetValue< ImageContainerBySTLMap< D, V >, DigitalSetFromMap< ImageContainerBySTLMap< D, V > >, D, V >
oCDGtal::IntegerComputer< TInteger >Aim: This class gathers several types and methods to make computation with integers
oCDGtal::IntervalForegroundPredicate< Image >Aim: Define a simple Foreground predicate thresholding image values between two constant values
oCDGtal::IntervalThresholder< T >Aim: A small functor with an operator () that compares one value to an interval
oCDGtal::IOException
oCDGtal::detail::IsCirculator< IC, flagHasNestedType >Aim: Checks whether type is a circular or a classical iterator. NB: from en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
oCDGtal::IsCirculator< IC >Aim: Checks whether type is a circular or a classical iterator
oCDGtal::detail::IsCirculator< IC, true >
oCDGtal::IsLowerPointPredicate< TPoint >Aim: The predicate returns true when the point is below (or equal) the given upper bound
oCDGtal::IsUpperPointPredicate< TPoint >Aim: The predicate returns true when the point is above (or equal) the given lower bound
oCDGtal::IsWithinPointPredicate< TPoint >Aim: The predicate returns true when the point is within the given bounds
oCDGtal::IndexedListWithBlocks< TValue, N, M >::Iterator
oCDGtal::ImageContainerByHashTree< TDomain, TValue, THashKey >::Iterator
oCDGtal::IteratorAdapter< TIterator, TFunctor, TReturnType >This class adapts any lvalue iterator so that operator* returns a member on the element pointed to by the iterator, instead the element itself
oCDGtal::IteratorCirculatorTagTraits< C >Aim: Provides the category of the iterator (resp. circulator) {ForwardCategory,BidirectionalCategory,RandomAccessCategory}
oCDGtal::IteratorCirculatorTagTraits< boost::bidirectional_traversal_tag >
oCDGtal::IteratorCirculatorTagTraits< boost::detail::iterator_category_with_traversal< std::input_iterator_tag, boost::bidirectional_traversal_tag > >
oCDGtal::IteratorCirculatorTagTraits< boost::detail::iterator_category_with_traversal< std::input_iterator_tag, boost::forward_traversal_tag > >
oCDGtal::IteratorCirculatorTagTraits< boost::detail::iterator_category_with_traversal< std::input_iterator_tag, boost::random_access_traversal_tag > >
oCDGtal::IteratorCirculatorTagTraits< boost::forward_traversal_tag >
oCDGtal::IteratorCirculatorTagTraits< boost::random_access_traversal_tag >
oCDGtal::IteratorCirculatorTagTraits< std::bidirectional_iterator_tag >
oCDGtal::IteratorCirculatorTagTraits< std::forward_iterator_tag >
oCDGtal::IteratorCirculatorTagTraits< std::random_access_iterator_tag >
oCDGtal::IteratorCirculatorTraits< IC >Aim: Provides nested types for both iterators and circulators: Type, Category, Value, Difference, Pointer and Reference
oCDGtal::IteratorCirculatorTraits< T * >
oCDGtal::IteratorCirculatorTraits< T const * >
oCDGtal::IteratorCirculatorType< IC >Aim: Provides the type of as a nested type
oCDGtal::detail::IteratorCirculatorTypeImpl< b >Aim: Defines the Iterator or Circulator type as a nested type according to the value of b
oCDGtal::detail::IteratorCirculatorTypeImpl< true >
oCDGtal::IteratorType
oCDGtal::IVector< T, TAlloc, usePointers >
oCDGtal::IVector< T, TAlloc, true >
oCDGtal::IVViewerAim: A facade to represent an inventor window for 3D objects. May be a SoXt or a SoQt examiner viewer. NB: backported from ImaGeneUtils library
oCDGtal::LabelledMap< TData, L, TWord, N, M >::KeyCompareKey comparator class. Always natural ordering
oCDGtal::KhalimskyCell< dim, TInteger >Represents an (unsigned) cell in a cellular grid space by its Khalimsky coordinates
oCDGtal::KhalimskySpaceND< dim, TInteger >Aim: This class is a model of CCellularGridSpaceND. It represents the cubical grid as a cell complex, whose cells are defined as an array of integers. The topology of the cells is defined by the parity of the coordinates (even: closed, odd: open)
oCDGtal::L1LengthEstimator< TConstIterator >Aim: a simple model of CGlobalCurveEstimator that compute the length of a curve using the l_1 metric (just add 1/h for every step)
oCDGtal::L1LocalDistance< TImage, TSet >Aim: Class for the computation of the L1-distance at some point p, from the available distance values of some points lying in the 1-neighborhood of p (ie. points at a L1-distance to p equal to 1)
oCDGtal::L2FirstOrderLocalDistance< TImage, TSet >Aim: Class for the computation of the Euclidean distance at some point p, from the available distance values of some points lying in the 1-neighborhood of p (ie. points at a L1-distance to p equal to 1)
oCDGtal::L2FirstOrderLocalDistanceFromCells< TKSpace, TMap, isIndirect >Aim: Class for the computation of the Euclidean distance at some point p, from the available distance values in the neighborhood of p. Contrary to L2FirstOrderLocalDistance, the distance values are not available from the points adjacent to p but instead from the (d-1)-cells lying between p and these points
oCDGtal::L2SecondOrderLocalDistance< TImage, TSet >Aim: Class for the computation of the Euclidean distance at some point p, from the available distance values of some points lying in the neighborhood of p, such that only one of their coordinate differ from the coordinates of p by at most two
oCDGtal::LabelledMap< TData, L, TWord, N, M >Aim: Represents a map label -> data, where the label is an integer between 0 and a constant L-1. It is based on a binary coding of labels and a mixed list/array structure. The assumption is that the number of used labels is much less than L. The objective is to minimize the memory usage
oCDGtal::detail::LabelledMapMemFunctor
oCDGtal::Labels< L, TWord >Aim: Stores a set of labels in {O..L-1} as a sequence of bits
oCDGtal::Lattice< TSpace >Aim: Represents an n-dimensional integer lattice in an m-dimensional real vector space
oCDGtal::LatticePolytope2D< TSpace, TSequence >Aim: Represents a 2D polytope, i.e. a convex polygon, in the two-dimensional digital plane. The list of points must follow the clockwise ordering
oCLessThanOnFace< Vector >
oCDGtal::LighterSternBrocot< TInteger, TQuotient, TMap >Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it progressively and to navigate within fractions in O(1) time for most operations. It is well known that the structure of this tree is a coding of the continued fraction representation of fractions
oCDGtal::LightExplicitDigitalSurface< TKSpace, TSurfelPredicate >Aim: A model of CDigitalSurfaceContainer which defines the digital surface as connected surfels. The shape is determined by a predicate telling whether a given surfel belongs or not to the shape boundary. The whole boundary is not precomputed nor stored. You may use an iterator to visit it
oCDGtal::LightImplicitDigitalSurface< TKSpace, TPointPredicate >Aim: A model of CDigitalSurfaceContainer which defines the digital surface as the boundary of an implicitly define shape. The whole boundary is not precomputed nor stored. You may use an iterator to visit it
oCDGtal::LightSternBrocot< TInteger, TQuotient, TMap >Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it progressively and to navigate within fractions in O(1) time for most operations. It is well known that the structure of this tree is a coding of the continued fraction representation of fractions
oCDGtal::LinearAlgebra< Space >Aim: A utility class that contains methods to perform integral linear algebra
oCDGtal::Display3D::lineD3D
oCDGtal::LInfLocalDistance< TImage, TSet >Aim: Class for the computation of the LInf-distance at some point p, from the available distance values of some points lying in the 1-neighborhood of p (ie. points at a L1-distance to p equal to 1)
oCDGtal::LocalConvolutionNormalVectorEstimator< TDigitalSurface, TKernelFunctor >Aim: Computes the normal vector at a surface element by convolution of elementary normal vector to adjacent surfel
oCDGtal::LOG2< X >
oCDGtal::LOG2< 1 >
oCDGtal::LOG2< 2 >
oCLogScaleFunctor< Scalar >[LogScaleFunctor]
oCDGtal::LongvolReader< TImageContainer >Aim: implements methods to read a "Longvol" file format (with DGtal::uint64_t value type)
oCDGtal::LongvolWriter< TImage, TFunctor >Aim: Export a 3D Image using the Longvol formats (volumetric image with DGtal::uint64_t value type)
oCDGtal::MagickReader< TImageContainer >Aim: implements methods to read a 2D image using the ImageMagick library
oCDGtal::MaxFunctor< T >
oCDGtal::deprecated::MaximalSegments< TSegment >Aim: Computes the set of maximal segments of a sequence. Maximal segments are segments that cannot be included in other segments. This class is a model of CDecomposition
oCDGtal::BasicColorToScalarFunctors::MeanChannels
oCDGtal::Measure< TSet >Aim: Implements a simple measure computation (in the Lesbegue sens) of a set. In dimension 2, it corresponds to the area of the set, to the volume in dimension 3,..
oCDGtal::MeasureOfStraightLinesThe aim of this class is to compute the measure in the Lebesgues sense of the set of straight lines associated to domains defined as polygons in the (a,b)-parameter space. This parameter space maps the line $ax-y+b=0$ to the point $(a,b)$
oCDGtal::MemoryException
oCDGtal::MeshFromPoints< TPoint >Aim: This class is defined to represent a surface mesh through a set a vertex and a set of faces represented by its vertex index. By default it does not memorize the color Face and all faces will have the white color
oCDGtal::MeshReader< TPoint >Aim: Defined to import OFF and OFS surface mesh. It allows to import a MeshFromPoints object and takes into accouts the optional color faces
oCDGtal::MeshWriter< TPoint >Aim: Export a Mesh (MeshFromPoints object) in different format as OFF and OBJ)
oCDGtal::MetricAdjacency< TSpace, maxNorm1, dimension >Aim: Describes digital adjacencies in digital spaces that are defined with the 1-norm and the infinity-norm
oCDGtal::MetricAdjacency< TSpace, 1, 2 >
oCDGtal::MetricAdjacency< TSpace, 1, 3 >
oCDGtal::MetricAdjacency< TSpace, 2, 2 >
oCDGtal::MetricAdjacency< TSpace, 2, 3 >
oCDGtal::MetricAdjacency< TSpace, 3, 3 >
oCDGtal::MinFunctor< T >
oCDGtal::MinusFunctor< T >
oCDGtal::MLPLengthEstimator< TConstIterator >Aim: a model of CGlobalCurveEstimator that computes the length of a digital curve using its MLP (given by the FP)
oCDGtal::ModuloComputer< TInteger >Implements basic functions on modular arithmetic
oCDGtal::Morton< THashKey, TPoint >Aim: Implements the binary Morton code construction in nD
oCDGtal::MostCenteredMaximalSegmentEstimator< SegmentComputer, SCEstimator >Aim: A model of CLocalCurveGeometricEstimator that assigns to each element of a (sub)range a quantity estimated from the most centered maximal segment passing through this element
oCDGtal::MPolynomial< n, TRing, TAlloc >Aim: Represents a multivariate polynomial, i.e. an element of \( K[X_0, ..., X_{n-1}] \), where K is some ring or field
oCDGtal::MPolynomial< 0, TRing, TAlloc >Aim: Specialization of MPolynomial for degree 0
oCDGtal::MPolynomialDerivativeComputer< N, n, Ring, Alloc >
oCDGtal::MPolynomialDerivativeComputer< 0, 0, Ring, Alloc >
oCDGtal::MPolynomialDerivativeComputer< 0, n, Ring, Alloc >
oCDGtal::MPolynomialDerivativeComputer< N, 0, Ring, Alloc >
oCDGtal::MPolynomialEvaluator< n, TRing, TAlloc, TX >
oCDGtal::MPolynomialEvaluator< 1, TRing, TAlloc, TX >
oCDGtal::MPolynomialEvaluatorImpl< n, TRing, TOwner, TAlloc, TX >
oCDGtal::MPolynomialEvaluatorImpl< 1, TRing, TOwner, TAlloc, TX >
oCmyreverse_iterator< _Iterator >
oCMyTransValueFunctor< TValue >Aim: Define a simple functor that returns a 'trans' value
oCDGtal::Negate< T >
oCDGtal::Negate< TagFalse >
oCDGtal::Negate< TagTrue >
oCDGtal::LightSternBrocot< TInteger, TQuotient, TMap >::Node
oCDGtal::LighterSternBrocot< TInteger, TQuotient, TMap >::Node
oCDGtal::SternBrocot< TInteger, TQuotient >::Node
oCDGtal::ImageContainerByHashTree< TDomain, TValue, THashKey >::Node
oCDGtal::BreadthFirstVisitor< TGraph, TMarkSet >::NodeAccessor
oCDGtal::DepthFirstVisitor< TGraph, TMarkSet >::NodeAccessor
oCNorm1< P >
oCDGtal::detail::NormalizedTangentVectorFromDSS
oCDGtal::NormalVectorEstimatorLinearCellEmbedder< TDigitalSurface, TNormalVectorEstimator, TEmbedder >Aim: model of cellular embedder for normal vector estimators on digital surface, (default constructible, copy constructible, assignable)
oCDGtal::detail::NormalVectorFromDCA
oCDGtal::NotBoolFct1
oCDGtal::NotPointPredicate< TPointPredicate >Aim: The predicate returns true when the point predicate given at construction return false. Thus inverse a predicate: NOT operator
oCDGtal::NumberTraits< T >Aim: The traits class for all models of Cinteger
oCDGtal::NumberTraits< double >
oCDGtal::NumberTraits< float >
oCDGtal::NumberTraits< int16_t >
oCDGtal::NumberTraits< int32_t >
oCDGtal::NumberTraits< int64_t >
oCDGtal::NumberTraits< int8_t >
oCDGtal::NumberTraits< long double >
oCDGtal::NumberTraits< uint16_t >
oCDGtal::NumberTraits< uint32_t >
oCDGtal::NumberTraits< uint64_t >
oCDGtal::NumberTraits< uint8_t >
oCDGtal::Object< TDigitalTopology, TDigitalSet >Aim: An object (or digital object) represents a set in some digital space associated with a digital topology
oCDGtal::FrechetShortcut< TIterator, TInteger >::Backpath::occulter_attributes
oCDGtal::OpInSTLContainers< Container, Iterator >Aim: Implementation of an adapter for erase and insert methods of STL containers so that they not only work for the iterator type, but also for the reverse_iterator type
oCDGtal::OpInSTLContainers< Container, std::reverse_iterator< typename Container::iterator > >
oCDGtal::OrBoolFct2
oCDGtal::OrderedAlphabetAim: Describes an alphabet over an interval of (ascii) letters, where the lexicographic order can be changed (shifted, reversed, ...). Useful for the arithmetic minimum length polygon (AMLP)
oCDGtal::OutputIteratorAdapter< TIterator, TFunctor, TInputValue >Aim: Adapts an output iterator i with a unary functor f, both given at construction, so that the element pointed to by i is updated with a given value through f
oCDGtal::OwningOrAliasingPtr< T >Aim: This class describes a smart pointer that is, given the constructor called by the user, either an alias pointer on existing data or an owning pointer on a copy
oCDGtal::Pair1st< ReturnType >Aim: Define a simple functor that returns the first member of a pair
oCDGtal::Pair1stMutator< ReturnType >Aim: Define a simple unary functor that returns a reference on the first member of a pair in order to update it
oCDGtal::Pair2nd< ReturnType >Aim: Define a simple functor that returns the second member of a pair
oCDGtal::Pair2ndMutator< ReturnType >Aim: Define a simple unary functor that returns a reference on the first member of a pair in order to update it
oCDGtal::ParametricShapeArcLengthFunctor< TParametricShape >Aim: implements a functor that estimates the arc length of a paramtric curve
oCDGtal::ParametricShapeCurvatureFunctor< TParametricShape >Aim: implements a functor that computes the curvature at a given point of a parametric shape
oCDGtal::ParametricShapeTangentFunctor< TParametricShape >Aim: implements a functor that computes the tangent vector at a given point of a parametric shape
oCDGtal::Pattern< TFraction >Aim: This class represents a pattern, i.e. the path between two consecutive upper leaning points on a digital straight line
oCDGtal::PGMWriter< TImage, TFunctor >Aim: Export a 2D and a 3D Image using the Netpbm PGM formats (ASCII mode)
oCDGtal::PNMReader< TImageContainer >Aim: Import a 2D or 3D using the Netpbm formats (ASCII mode)
oCDGtal::Point2ShapePredicate< TSurface, isUpward, isClosed >Aim: Predicate returning 'true' iff a given point is in the 'interior' of a given shape, 'false' otherwise
oCDGtal::Point2ShapePredicateComparator< T, b1, b2 >Aim: A small struct with an operator that compares two values according to two bool template parameters
oCDGtal::Point2ShapePredicateComparator< T, false, false >Aim: A small struct with an operator that compares two values (<)
oCDGtal::Point2ShapePredicateComparator< T, false, true >Aim: A small struct with an operator that compares two values (<=)
oCDGtal::Point2ShapePredicateComparator< T, true, false >Aim: A small struct with an operator that compares two values (>)
oCDGtal::Point2ShapePredicateComparator< T, true, true >Aim: A small struct with an operator that compares two values (>=)
oCPoint3D
oCDGtal::deprecated::Point3dTo2dXY< Coordinate >Aim: transforms a 3d point into a 2d point due to a projection on the xy-plane
oCDGtal::deprecated::Point3dTo2dXZ< Coordinate >Aim: transforms a 3d point into a 2d point due to a projection on the xz-plane
oCDGtal::deprecated::Point3dTo2dYZ< Coordinate >Aim: transforms a 3d point into a 2d point due to a projection on the yz-plane
oCDGtal::Display3D::pointD3D
oCDGtal::PointFunctorPredicate< TPointFunctor, TPredicate >Aim: The predicate returns true when the predicate returns true for the value assigned to a given point in the point functor
oCDGtal::PointListReader< TPoint >Aim: Implements method to read a set of points represented in each line of a file
oCDGtal::details::PointValueCompare< T >Aim: Small binary predicate to order candidates points according to their (absolute) distance value
oCDGtal::PointVector< dim, TEuclideanRing >Aim: Implements basic operations that will be used in Point and Vector classes
oCDGtal::Display3D::polygonD3D
oCDGtal::detail::PosDepScaleDepSCEstimator< TSegmentComputer, Functor, ReturnType >
oCDGtal::detail::PosDepScaleDepSCEstimator< DCAComputer, detail::DistanceFromDCA >
oCDGtal::detail::PosDepScaleIndepSCEstimator< TSegmentComputer, Functor, ReturnType >
oCDGtal::detail::PosDepScaleIndepSCEstimator< DCAComputer, detail::NormalVectorFromDCA >
oCDGtal::detail::PosDepScaleIndepSCEstimator< DCAComputer, detail::TangentVectorFromDCA >
oCDGtal::detail::PosIndepScaleDepSCEstimator< TSegmentComputer, Functor, ReturnType >
oCDGtal::detail::PosIndepScaleDepSCEstimator< DCAComputer, detail::CurvatureFromDCA< isCCW > >
oCDGtal::detail::PosIndepScaleIndepSCEstimator< TSegmentComputer, Functor, ReturnType >
oCDGtal::detail::PosIndepScaleIndepSCEstimator< DSSComputer, detail::NormalizedTangentVectorFromDSS >
oCDGtal::detail::PosIndepScaleIndepSCEstimator< DSSComputer, detail::TangentAngleFromDSS >
oCDGtal::detail::PosIndepScaleIndepSCEstimator< DSSComputer, detail::TangentVectorFromDSS< DSSComputer > >
oCDGtal::POW< X, exponent >
oCDGtal::POW< X, 1 >
oCDGtal::PPMWriter< TImage, TFunctor >Aim: Export a 2D and a 3D Image using the Netpbm PPM formats (ASCII mode)
oCDGtal::PredicateCombiner< TPredicate1, TPredicate2, TBinaryFunctor >Aim: The predicate returns true when the given binary functor returns true for the two Predicates given at construction
oCDGtal::Preimage2D< Shape >Aim: Computes the preimage of the 2D Euclidean shapes crossing a sequence of n straigth segments in O(n), with the algorithm of O'Rourke (1981)
oCDGtal::Projector< S >Aim: Functor that maps a point P of dimension i to a point Q of dimension j. The member myDims is an array containing the coordinates - (0, 1, ..., j-1) by default - that are copied from P to Q
oCDGtal::promote_trait< A, B >
oCDGtal::promote_trait< int32_t, int64_t >
oCDGtal::Display3D::quadD3D
oCDGtal::RandomColorMapAim: access to random color from a gradientColorMap
oCDGtal::RawReader< TImageContainer >Aim: implements methods to read a "Vol" file format
oCDGtal::RawWriter< TImage, TFunctor >Aim: Raw binary export of an Image
oCDGtal::StdMapRebinder::Rebinder< Key, Value >
oCDGtal::BasicColorToScalarFunctors::RedChannel
oCDGtal::RegularPointEmbedder< TSpace >Aim: A simple point embedder where grid steps are given for each axis. Note that the real point (0,...,0) is mapped onto the digital point (0,...,0)
oCDGtal::ReverseDistanceTransformation< Image, p, IntegerShort >Aim: Implementation of the linear in time reverse distance transformation
oCDGtal::ReverseIterator< Iterator >This class adapts any bidirectional iterator so that operator++ calls operator– and vice versa
oCDGtal::ConceptUtils::SameType< T1, T2 >
oCDGtal::ConceptUtils::SameType< T, T >
oCDGtal::SaturatedSegmentation< TSegmentComputer >Aim: Computes the saturated segmentation, that is the whole set of maximal segments within a range given by a pair of ConstIterators (maximal segments are segments that cannot be included in greater segments)
oCDGtal::KhalimskySpaceND< dim, TInteger >::SCellMap< Value >
oCDGtal::SCellToArrow< KSpace >Aim: transforms a signed cell into an arrow, ie. a pair point-vector
oCDGtal::deprecated::SCellToArrow< KSpace >Aim: transforms a signed cell into an arrow, ie. a pair point-vector
oCDGtal::SCellToCode< KSpace >Aim: transforms a 2d signed cell, basically a linel, into a code (0,1,2 or 3),
oCDGtal::deprecated::SCellToCode< KSpace >Aim: transforms a 2d scell, basically a linel, into a code (0,1,2 or 3),
oCDGtal::deprecated::SCellToIncidentPoints< KSpace >Aim: transforms a linel into a pair of points, which are the centers of the two incident pixels
oCDGtal::SCellToIncidentPoints< KSpace >Aim: transforms a signed cell c into a pair of points corresponding to the signed cells of greater dimension that are indirectly and directly incident to c
oCDGtal::deprecated::SCellToInnerPoint< KSpace >Aim: transforms a signed cell into a point, basically a linel into the indirect incident pixel center
oCDGtal::SCellToInnerPoint< KSpace >Aim: transforms a signed cell c into a point corresponding to the signed cell of greater dimension that is indirectly incident to c
oCDGtal::SCellToMidPoint< KSpace >Aim: transforms a scell into a real point (the coordinates are divided by 2)
oCDGtal::deprecated::SCellToMidPoint< KSpace >Aim: transforms a scell into a real point (the coordinates are divided by 2)
oCDGtal::SCellToOuterPoint< KSpace >Aim: transforms a signed cell c into a point corresponding to the signed cell of greater dimension that is directly incident to c
oCDGtal::deprecated::SCellToOuterPoint< KSpace >Aim: transforms a sigend cell into a point, basically a linel into the direct incident pixel center
oCDGtal::deprecated::SCellToPoint< KSpace >Aim: transforms a scell into a point
oCDGtal::SCellToPoint< KSpace >Aim: transforms a scell into a point
oCDGtal::SaturatedSegmentation< TSegmentComputer >::SegmentComputerIteratorAim: Specific iterator to visit all the maximal segments of a saturated segmentation
oCDGtal::GreedySegmentation< TSegmentComputer >::SegmentComputerIteratorAim: Specific iterator to visit all the segments of a greedy segmentation
oCDGtal::SegmentComputerTraits< SC >Aim: Provides the category of the segment computer {ForwardSegmentComputer,BidirectionalSegmentComputer, DynamicSegmentComputer, DynamicBidirectionalSegmentComputer}
oCSegmentedPlane
oCDGtal::deprecated::MaximalSegments< TSegment >::SegmentIterator
oCDGtal::deprecated::GreedyDecomposition< TSegment >::SegmentIterator
oCDGtal::SeparableMetricHelper< TPoint, TInternalValue, tp >Aim: Implements basic functions associated to metrics used by separable volumetric algorithms
oCDGtal::SeparableMetricHelper< TPoint, TInternalValue, 0 >
oCDGtal::SeparableMetricHelper< TPoint, TInternalValue, 1 >
oCDGtal::SeparableMetricHelper< TPoint, TInternalValue, 2 >
oCDGtal::SetFromImage< TSet >Aim: Define utilities to convert a digital set into an image
oCDGtal::SetOfSurfels< TKSpace, TSurfelSet >Aim: A model of CDigitalSurfaceContainer which defines the digital surface as connected surfels. The shape is determined by the set of surfels that composed the surface. The set of surfels is stored in this container
oCDGtal::SetPredicate< TDigitalSet >Aim: The predicate returning true iff the point is in the domain given at construction
oCDGtal::SetValueIterator< TImage, TIteratorOnPts >Aim: implements an output iterator, which is able to write values in an underlying image, by calling its setValue method
oCLibBoard::Shape [external]Abstract structure for a 2D shape
oCDGtal::Shapes< TDomain >Aim: A utility class for constructing different shapes (balls, diamonds, and others)
oCDGtal::Signal< TValue >Aim: Represents a discrete signal, periodic or not. The signal can be passed by value since it is only cloned when modified
oCDGtal::SignalData< TValue >
oCDGtal::SignedKhalimskyCell< dim, TInteger >Represents a signed cell in a cellular grid space by its Khalimsky coordinates and a boolean value
oCDGtal::SimpleConstRange< TConstIterator >Aim: model of CConstRange that adapts any range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner)
oCDGtal::SimpleMatrix< TComponent, TM, TN >Aim: implements basic MxN Matrix services (M,N>=1)
oCDGtal::SimpleMatrixSpecializations< TMatrix, TM, TN >Aim: Implement internal matrix services for specialized matrix size
oCDGtal::SimpleMatrixSpecializations< TMatrix, 1, 1 >Aim:
oCDGtal::SimpleMatrixSpecializations< TMatrix, 2, 2 >Aim:
oCDGtal::SimpleMatrixSpecializations< TMatrix, 3, 3 >Aim:
oCDGtal::SimpleRandomAccessConstRangeFromPoint< TConstIterator, DistanceFunctor >Aim: model of CConstBidirectionalRangeFromPoint that adapts any range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner)
oCDGtal::SimpleRandomAccessRangeFromPoint< TConstIterator, TIterator, DistanceFunctor >Aim: model of CBidirectionalRangeFromPoint that adapts any range of elements bounded by two iterators [itb, ite) and provides services to (circularly)iterate over it (in a read-only manner)
oCDGtal::SimpleThresholdForegroundPredicate< Image >Aim: Define a simple Foreground predicate thresholding image values given a single thresold. More precisely, the functor operator() returns true if the value is greater than a given threshold
oCDGtal::SpaceND< dim, TInteger >Aim: SpaceND is a utility class that defines the fundamental structure of a Digital Space in ND
oCDGtal::ImageContainerBySTLVector< TDomain, TValue >::SpanIterator
oCDGtal::SpeedExtrapolator< TDistanceImage, TSet, TSpeedFunctor >Aim: Class for the computation of the a speed value at some point p, from the available distance values and speed values of some points lying in the 1-neighborhood of p (ie. points at a L1-distance to p equal to 1) in order to extrapolate a speed field in the normal direction to the interface
oCDGtal::SphericalAccumulator< TVector >Aim: implements an accumulator (as histograms for 1D scalars) adapted to spherical point samples
oCDGtal::StandardDSLQ0< TFraction >
oCDGtal::StarShaped2D< TSpace >
oCDGtal::StarShaped3D< TSpace >
oCDGtal::COBANaivePlane< TSpace, TInternalInteger >::State
oCDGtal::UmbrellaComputer< TDigitalSurfaceTracker >::State
oCDGtal::Statistic< RealNumberType >Aim: This class processes a set of sample values for one variable and can then compute different statistics, like sample mean, sample variance, sample unbiased variance, etc. It is minimalistic for space efficiency. For multiple variables, sample storage and others, see Statistics class
oCDGtal::StdMapRebinder
oCDGtal::SternBrocot< TInteger, TQuotient >Aim: The Stern-Brocot tree is the tree of irreducible fractions. This class allows to construct it progressively and to navigate within fractions in O(1) time for most operations. It is well known that the structure of this tree is a coding of the continued fraction representation of fractions
oCDGtal::STLMapToVertexMapAdapter< TMap >Aim: This class adapts any map of the STL to match with the CVertexMap concept
oCDGtal::StraightLineFrom2Points< TPoint >Aim: Represents a straight line uniquely defined by two 2D points and that is able to return for any given 2D point its signed distance to itself
oCDGtal::Style2DFactory
oCDGtal::SpaceND< dim, TInteger >::Subcospace< codimension >Define the type of a sub co-Space
oCDGtal::SpaceND< dim, TInteger >::Subspace< subdimension >Define the type of a subspace
oCDGtal::Surfaces< TKSpace >Aim: A utility class for constructing surfaces (i.e. set of (n-1)-cells)
oCDGtal::SurfelAdjacency< dim >Aim: Represent adjacencies between surfel elements, telling if it follows an interior to exterior ordering or exterior to interior ordering. It allows tracking of boundaries and of surfaces
oCDGtal::KhalimskySpaceND< dim, TInteger >::SurfelMap< Value >
oCDGtal::DigitalSurface< TDigitalSurfaceContainer >::SurfelMap< Value >
oCDGtal::SurfelNeighborhood< TKSpace >Aim: This helper class is useful to compute the neighboring surfels of a given surfel, especially over a digital surface or over an object boundary. Two signed surfels are incident if they share a common n-2 cell. This class uses a SurfelAdjacency so as to determine adjacent surfels (either looking for them from interior to exterior or inversely)
oCDGtal::SurfelSetPredicate< TSurfelSet, TSurfel >Aim: The predicate returning true iff the point is in the domain given at construction
oCDGtal::TagFalse
oCDGtal::TagTrue
oCDGtal::TagUnknown
oCDGtal::detail::TangentAngleFromDSS
oCDGtal::TangentFromBinomialConvolverFunctor< TBinomialConvolver, TRealPoint >Aim: This class is a functor for getting the tangent vector of a binomial convolver
oCDGtal::detail::TangentVectorFromDCA
oCDGtal::detail::TangentVectorFromDSS< DSS >
oCDGtal::detail::TangentVectorFromDSS< DSSComputer >
oCDGtal::Thresholder< T, isLower, isEqual >Aim: A small functor with an operator () that compares one value to a threshold value according to two bool template parameters
oCDGtal::Thresholder< T, false, false >
oCDGtal::Thresholder< T, false, true >
oCDGtal::Thresholder< T, true, false >
oCDGtal::Thresholder< T, true, true >
oCDGtal::ArithmeticalDSS< TIterator, TInteger, connectivity >::Tools< TInt, c >
oCDGtal::FrechetShortcut< TIterator, TInteger >::Tools
oCDGtal::ArithmeticalDSS< TIterator, TInteger, connectivity >::Tools< TInt, 4 >
oCDGtal::TraceImplementation of basic methods to trace out messages with indentation levels
oCDGtal::TraceWriterVirtual Class to implement trace writers
oCDGtal::ExplicitDigitalSurface< TKSpace, TSurfelPredicate >::Tracker
oCDGtal::SetOfSurfels< TKSpace, TSurfelSet >::Tracker
oCDGtal::LightImplicitDigitalSurface< TKSpace, TPointPredicate >::Tracker
oCDGtal::ImplicitDigitalSurface< TKSpace, TPointPredicate >::Tracker
oCDGtal::DigitalSetBoundary< TKSpace, TDigitalSet >::Tracker
oCDGtal::LightExplicitDigitalSurface< TKSpace, TSurfelPredicate >::Tracker
oCDGtal::Display3D::triangleD3D
oCDGtal::TrueBoolFct0
oCDGtal::TrueGlobalEstimatorOnPoints< TConstIteratorOnPoints, TParametricShape, TParametricShapeFunctor >Aim: Computes the true quantity to each element of a range associated to a parametric shape
oCDGtal::TrueLocalEstimatorOnPoints< TConstIteratorOnPoints, TParametricShape, TParametricShapeFunctor >Aim: Computes the true quantity to each element of a range associated to a parametric shape
oCDGtal::TwoStepLocalLengthEstimator< TConstIterator >Aim: a simple model of CGlobalCurveEstimator that compute the length of a curve using the l_1 metric (just add 1/h for every step)
oCDGtal::UmbrellaComputer< TDigitalSurfaceTracker >Aim: Useful for computing umbrellas on 'DigitalSurface's, ie set of n-1 cells around a n-3 cell
oCDGtal::LabelledMap< TData, L, TWord, N, M >::ValueCompareValue comparator class. Always natural ordering between keys
oCDGtal::AngleLinearMinimizer::ValueInfo
oCDGtal::IndexedListWithBlocks< TValue, N, M >::ValueOrBlockPointerUsed in blocks to finish it or to point to the next block
oCDGtal::BreadthFirstVisitor< TGraph, TMarkSet >::VertexAccessor
oCDGtal::DepthFirstVisitor< TGraph, TMarkSet >::VertexAccessor
oCDGtal::Object< TDigitalTopology, TDigitalSet >::VertexMap< Value >
oCDGtal::LightExplicitDigitalSurface< TKSpace, TSurfelPredicate >::VertexMap< Value >
oCDGtal::DigitalSurface< TDigitalSurfaceContainer >::VertexMap< Value >
oCDGtal::MetricAdjacency< TSpace, 2, 3 >::VertexMap< Value >
oCDGtal::LightImplicitDigitalSurface< TKSpace, TPointPredicate >::VertexMap< Value >
oCDGtal::MetricAdjacency< TSpace, 3, 3 >::VertexMap< Value >
oCDGtal::MetricAdjacency< TSpace, 2, 2 >::VertexMap< Value >
oCDGtal::MetricAdjacency< TSpace, maxNorm1, dimension >::VertexMap< Value >
oCDGtal::CUndirectedSimpleLocalGraph< T >::VertexMap< Value >
oCDGtal::DomainAdjacency< TDomain, TAdjacency >::VertexMap< Value >
oCDGtal::MetricAdjacency< TSpace, 1, 3 >::VertexMap< Value >
oCDGtal::MetricAdjacency< TSpace, 1, 2 >::VertexMap< Value >
oCVertexSize
oCDGtal::VolReader< TImageContainer >Aim: implements methods to read a "Vol" file format
oCDGtal::VolWriter< TImage, TFunctor >Aim: Export a 3D Image using the Vol formats
oCDGtal::VoronoiMap< TSpace, TPointPredicate, p >Aim: Implementation of the linear in time Voronoi map construction
oCDGtal::Display3D::voxelD3D
oCDGtal::Warning_promote_trait_not_specialized_for_this_case
oCDGtal::Xe_kComputer< n, Ring, Alloc >
oCDGtal::Xe_kComputer< 0, Ring, Alloc >
\CDGtal::XorBoolFct2